
Fundamentals of

Multiagent Systems
with NetLogo Examples

José M Vidal

March 19, 2009

Fundamentals of Multiagent Systems
by José M. Vidal
Copyright c© 2007 José M. Vidal. All rights reserved.

Contents

Preface 7
0.1 Usage . 7
0.2 Acknowledgments . 8

1 Multiagent Problem Formulation 9
1.1 Utility . 9

1.1.1 Utility is Not Money . 10
1.1.2 Expected Utility . 11

1.2 Markov Decision Processes . 12
1.2.1 Multiagent Markov Decision Processes 14
1.2.2 Partially Observable MDPs 15

1.3 Planning . 15
1.3.1 Hierarchical Planning . 16

1.4 Summary . 17
Exercises . 17

2 Distributed Constraints 19
2.1 Distributed Constraint Satisfaction 19

2.1.1 Filtering Algorithm . 21
2.1.2 Hyper-Resolution Based Consistency Algorithm 22
2.1.3 Asynchronous Backtracking 24
2.1.4 Asynchronous Weak-Commitment Search 27
2.1.5 Distributed Breakout . 29

2.2 Distributed Constraint Optimization 31
2.2.1 Adopt . 32
2.2.2 OptAPO . 37

Exercises . 38

3 Standard and Extended Form Games 39
3.1 Games in Normal Form . 39

3.1.1 Solution Concepts . 40
3.1.2 Famous Games . 42
3.1.3 Repeated Games . 44

3.2 Games in Extended Form . 45
3.2.1 Solution Concepts . 46

3.3 Finding a Solution . 47
Exercises . 47

4 Characteristic Form Games and Coalition Formation 49
4.1 Characteristic Form Games . 49

4.1.1 Solution Concepts . 50
4.1.2 Finding the Optimal Coalition Structure 55

4.2 Coalition Formation . 57
Exercises . 57

3

4 Contents

5 Learning in Multiagent Systems 59
5.1 The Machine Learning Problem . 59
5.2 Cooperative Learning . 61
5.3 Repeated Games . 61

5.3.1 Fictitious Play . 61
5.3.2 Replicator Dynamics . 63
5.3.3 The AWESOME Algorithm 66

5.4 Stochastic Games . 67
5.4.1 Reinforcement Learning . 68

5.5 General Theories for Learning Agents 71
5.5.1 CLRI Model . 71
5.5.2 N-Level Agents . 73

5.6 Collective Intelligence . 74
5.7 Summary . 76
5.8 Recent Advances . 76
Exercises . 76

6 Negotiation 77
6.1 The Bargaining Problem . 77

6.1.1 Axiomatic Solution Concepts 78
6.1.2 Strategic Solution Concepts 81

6.2 Monotonic Concession Protocol . 83
6.2.1 The Zeuthen Strategy . 84
6.2.2 One-Step Protocol . 86

6.3 Negotiation as Distributed Search . 86
6.4 Ad-hoc Negotiation Strategies . 87
6.5 The Task Allocation Problem . 88

6.5.1 Payments . 89
6.5.2 Lying About Tasks . 92
6.5.3 Contracts . 92

6.6 Complex Deals . 94
6.6.1 Annealing Over Complex Deals 95

6.7 Argumentation-Based Negotiation 97
6.8 Negotiation Networks . 98

6.8.1 Network Exchange Theory . 99
Exercises . 101

7 Auctions 103
7.1 Valuations . 103
7.2 Simple Auctions . 104

7.2.1 Analysis . 105
7.2.2 Auction Design . 107

7.3 Combinatorial Auctions . 107
7.3.1 Centralized Winner Determination 108
7.3.2 Distributed Winner Determination 113
7.3.3 Bidding Languages . 115
7.3.4 Preference Elicitation . 116
7.3.5 VCG Payments . 119

Exercises . 119

8 Voting and Mechanism Design 121
8.1 The Voting Problem . 121

8.1.1 Possible Solutions . 122
8.1.2 Voting Summary . 124

8.2 Mechanism Design . 124
8.2.1 Problem Description . 124
8.2.2 Distributed Mechanism Design 131

Contents 5

8.2.3 Mechanism Design Summary 134

9 Coordination Using Goal and Plan Hierarchies 137
9.1 tæms . 137
9.2 GPGP . 139

9.2.1 Agent Architecture . 139
9.2.2 Coordination . 140
9.2.3 Design-to-Criteria Scheduler 141
9.2.4 GPGP/tæms Summary . 141

10 Nature-Inspired Approaches 143
10.1 Ants and Termites . 143
10.2 Immune System . 143
10.3 Physics . 143

Bibliography 145

Index 153

Preface

The goal of this book is to cover all the material that a competent multiagent
practitioner or researcher should be familiar with. Of course, since this is a relatively
new field the list of required material is still growing and there is some uncertainty
as to what are the most important ideas. I have chosen to concentrate on the
theoretical aspects of multiagent systems since these ideas have been around for
a long time and are important for a wide variety of applications. I have stayed
away from technological issues because these are evolving very fast. Also, it would
require another textbook to describe all the distributed programming tools available.
A reader interested in the latest multiagent technologies should visit the website
www.multiagent.com.

The book is linked to a large number of sample NetLogo programs (Wilensky,
1999). These programs are meant to be used by the reader as an aid in understanding
emergent decentralized behaviors. It is hard for people, especially those new to
distributed systems, to fully grasp the order that can arise from seemingly chaotic
simple interactions. As Resnick notices:

Resnick points to examples

such as surveys of 8–15 year

old kids, half of which believe

that the government sets all

prices and salaries.“But even as the influence of decentralized ideas grows, there is a
deep-seated resistance to such ideas. At some deep level, people seem
to have strong attachments to centralized ways of thinking. When peo-
ple see patterns in the world (like a flock of birds), they often assume
that there is some type of centralized control (a leader of the flock). Ac-
cording to this way of thinking, a pattern can exist only if someone (or
something) creates and orchestrates the pattern. Everything must have
a single cause, and ultimate controlling factor. The continuing resis-
tance to evolutionary theories is an example: many people still insist
that someone or something must have explicitly designed the complex,
orderly structures that we call Life.” (Resnick, 1994)

Resnick created StarLogo in

order to teach the decentralized

mindset. Wilensky, one of his

students, later extended

StarLogo and created NetLogo.

The reader is assumed to be familiar with basic Artificial Intelligence techniques
(Russell and Norvig, 2003). The reader should also be comfortable with mathe-
matical notation and basic computer science algorithms. The book is written for a
graduate or advanced undergraduate audience. I also recommend (Mas-Colell et al.,
1995; Osborne and Rubinstein, 1999) as reference books.

0.1 Usage

If you are using the pdf version of this document you can click on any of the citations
and your pdf reader will take you to the appropriate place in the bibliography. From
there you can click on the title of the paper and your web browser will take you to
a page with a full description of the paper. You can also get the full paper if you
have the user-name and password I provide in class. The password is only available
to my students due to licensing restrictions on some of the papers.

Whenever you see an icon such as the one on this margin it means that we have
ABTgcNetLogo implementation of a relevant problem. If you are using the pdf version

of this document you can just click on the name and your browser will take you
to the appropriate applet. Otherwise, the url is formed by pre-pending http://
jmvidal.cse.sc.edu/netlogomas/ to the name and appending .html at the end.
So the url for this icon is http://jmvidal.cse.sc.edu/netlogomas/ABTgc.html.

7

www.multiagent.com
http://jmvidal.cse.sc.edu/netlogomas/ABTgc.html
http://jmvidal.cse.sc.edu/netlogomas/
http://jmvidal.cse.sc.edu/netlogomas/
.html
http://jmvidal.cse.sc.edu/netlogomas/ABTgc.html

8 Contents

0.2 Acknowledgments

I would like to thank the students at the University of South Carolina who have
provided much needed feedback on all revisions of this book. Specifically, I thank
Jimmy Cleveland, Jiangbo Dang, Huang Jingshan, and Alicia Ruvinsky. I am also
especially grateful to faculty members from other Universities who have used this
book in their classes and provided me with invaluable feedback. Specifically I thank
Ramón F. Brena, Muaz Niazi, and Iyad Rahwan.

Chapter 1

Multiagent Problem Formulation

The goal of multiagent systems’ research is to find methods that allow us to build
complex systems composed of autonomous agents who, while operating on local
knowledge and possessing only limited abilities, are nonetheless capable of enacting
the desired global behaviors. We want to know how to take a description of what a
system of agents should do and break it down into individual agent behaviors. At its
most ambitious, multiagent systems aims at reverse-engineering emergent phenom-
ena as typified by ant colonies, the economy, and the immune system. Multiagent
systems approaches the problem using the well proven tools from game theory,
Economics, and Biology. It supplements these with ideas and algorithms from ar-
tificial intelligence research, namely planning, reasoning methods, search methods,
and machine learning.

A more relaxed introduction to

the topics in this chapter is

given in (Russell and Norvig,

2003, Chapters 16–17).
These disparate influences have lead to the development of many different ap-

proaches, some of which end up being incompatible with each other. That is, it is
sometimes not clear if two researchers are studying variations of the same problem
or completely different problems. Still, the model that has thus far gained most
attention, probably due to its flexibility as well as its well established roots in game
theory and artificial intelligence, is that of modeling agents as utility maximizers
who inhabit some kind of Markov decision process. This is the model we present in
this chapter and the one we will use most often throughout the book. Note, however,
that while this is a very general model it is not always the best way to describe the
problem. We will also examine the traditional artificial intelligence planning model
and, in later chapters, models inspired by Biology. Another popular model is that
of agents as logical inference machines. This model is favored by those working on
semantic or logical applications. We will sometimes make reference to deductive

deductive
agents which can deduce facts based on the rules of logic, and inductive agents

inductive
(see Chapter 5) which use machine learning techniques to extrapolate conclusions
from the given evidence.

1.1 Utility

A common simplifying assumption is that an agent’s preferences are captured by
a utility function. This function provides a map from the states of the world or

utility function
outcome of game to a real number. The bigger the number the more the agent likes

In game theory it is known as

the von Neumann-Morgenstern

utility function.

that particular state. Specifically, given that S is the set of states in the world the
agent can perceive then agent i’s utility function is of the form

ui : S → <. (1.1)

Notice also that the states are defined as those states of the world that the agent
can perceive. For example, if a robot has only one sensor that feeds him a binary
input, say 1 if it is bright and 0 if its dark, then that robot has a utility function
defined over only two states regardless of how complicated the real world might
be, such as ui(0) = 5, ui(1) = 10. In practice, agents have sophisticated inputs
and it is impractical to define a different output for each input. Thus, most agents
also end up mapping their raw inputs to a smaller set of world states. Creating

9

10 Chapter 1. Multiagent Problem Formulation

this mapping function can be challenging as it requires a deep understanding of the
problem setting.

Given an agent’s utility function we can define a preference ordering for the
preference ordering

agent over the states of the world. By comparing the utility values of two states we
can determine which one is preferred by the agent. This ordering has the following
properties.

• reflexive: ui(s) ≥ ui(s)

• transitive: If ui(a) ≥ ui(b) and ui(b) ≥ ui(c) then ui(a) ≥ ui(c).

• comparable: ∀a,b either ui(a) ≥ ui(b) or ui(b) ≥ ui(a).

We can use utility functions to describe the behavior of almost every agent.
Utility functions are also useful for capturing the various tradeoffs that an agent
must make, along with the value or expected value of its actions. For example, we
can say that a robot receives a certain payment for delivering a package but also
incurs a cost in terms of the electricity used as well as the opportunity cost—he
could have been delivering other packages. If we translate all these payments and
costs into utility numbers then we can easily study the tradeoffs among them.

Once we have defined a utility function for all the agents then all they have
to do is take actions which maximize their utility. As in game theory, we use the
word selfish to refer to a rational agent that wants to maximize its utility. Notice

selfish
that this use is slightly different from the everyday usage of the word which often
implies a desire to harm others, a true selfish agent cares exclusively about its
utility. The use of selfish agents does not preclude the implementation of cooperative
multiagent systems. We can view a cooperative multiagent system as one where the

selfish, adj. Devoid of

consideration for the

selfishness of others. —The

Devil’s Dictionary
agents’ utility functions have been defined in such a way so that the agents seem to
cooperate. For example, if an agent receives a higher utility for helping other agents
then the resulting behavior will seem cooperative to an observer even though the
agent is acting selfishly.

We use utility functions as a succinct way of representing an agent’s behav-
ior. In the actual implementations these functions will sometimes be probabilistic,
sometimes they will be learned as the agent acts in the world, sometimes they will
be incomplete, sometimes they will be the result of some inferencing or induction.
Still, by assuming that the function exists we can more easily design and study a
multiagent system.

1.1.1 Utility is Not Money

Note that while utility represents an agent’s preferences it is not necessarily equated
with money. In fact, the utility of money has been found to be roughly logarithmic.
For example, say Bill has $100 million while Tim has $0 in the bank. They both
contemplate the possibility of winning one million dollars. Clearly, that extra million
will make a significant difference in Tim’s lifestyle while Bill’s lifestyle will remain
largely unchanged, thus Tim’s utility for the same million dollars is much larger
than Bill’s. There is experimental evidence that shows most people have these type
of conditional preferences. Very roughly, people’s utility for smaller amounts of
money is linear but for larger amounts it becomes logarithmic. Notice that we are
considering the marginal utility of money, that is, it is the utility for the next

marginal utility
million dollars. We assume that both Bill and Tim have the same utility for their
first million dollars.You can determine your own

curve by repeatedly asking

yourself for increasing values of

x: which one would you rather

have, x dollars, or a 50/50

chance at winning 2 · x dollars?

When you start preferring the

first choice you are dropping

below the y = x line.

Recent results in behavioral economics have shown that the true utility func-
tion is more complicated than what can be captured by a mathematical function
(Camerer et al., 2003). One experiment shows that people are less likely to take a
gamble when the wording of the question is such that the person must give back
some money, even if the gamble is mathematically identical to another one that uses
different wording. The experiment in question is the following: which option would
you prefer (a) I give you $10,000 and a 50/50 chance at winning another $10,000,

1.1. Utility 11

or (b) I give you $20,000 and then flip a coin and if it comes out heads you have to
give me $10,000. Both of these are equivalent but a large majority of people prefer
option (a).

The fact that people are not entirely rational when making choices about money
becomes important to us when we start to think about building agents that will
buy, sell, or negotiate for humans. It is reasonable to assume that in these systems
people will demand agents that behave like people. Otherwise, the agent would be
making decisions the user finds disagreeable. People’s apparent irrationality also
opens up the possibility that we could build agents that are better negotiators than
us.

1.1.2 Expected Utility

Once we have utility functions we must then determine how the agents will use
them. We assume each agent has some sensors which it can use to determine the
state of the world and some effectors which it can use to take action. These actions
can lead to new states of the world. For example, an agent senses its location and
decides to move forward one foot. Of course, these sensors and effectors might not
operate perfectly: the agent might not move exactly one foot or its sensors might be
noisy. Let’s assume, however, that the agent does know the probability of reaching
state s′ given that it is in state s and takes action a. This probability is given
by T (s, a, s′) which we call the transition function. Since the transition function

transition function
returns a probability then it must be true that the sum of T (s, a, s′) over all possible
a and s′ is equal to one.

Using this transition function the agent can then calculate its expected utility
expected utility

for taking action a in state s as

E[ui, s, a] =
∑
s′∈S

T (s, a, s′)ui(s′), (1.2)

where S is the set of all possible states.
An agent can use the expected utility function to determine the value of a piece

of added information it might acquire such as an extra sensor reading or a message
from another agent. For example, consider a piece of new information that leads
the agent to determine that it is not really in state s but it is instead in state t.
Perhaps a second agent tells him that he is near a precipice and not in the middle
of a plateau as the agent originally thought. In this case the agent can compare the
expected utility it would have received under the old state against the new one it
will now receive. That is, the value of information for that piece of information

value of information
is given by

E[ui, t, πi(t)]− E[ui, t, πi(s)]. (1.3)

The value of the piece of information is the expected utility the agent receives now
that he knows he is in t and takes action accordingly minus the utility it would
have received if he had instead mistakenly assumed it was in s and taken action
accordingly. This equation provides a simple and robust way for agents to make
meta-level decisions about what knowledge to seek: what messages to send, which
sensors to turn on, how much deliberation to perform, etc.

Specifically, an agent can use it to play “what if” games to determine its best
action in the same way a person might. For example, say a doctor has made a pre-
liminary decision about which drug to prescribe for a patient but is uncertain about
the patient’s specific disease. She can calculate the value of information acquired
from performing various tests which could identify the specific disease. If a test,
regardless of its outcome, would still lead the doctor to prescribe the same drug
then the value of the information from that test’s result is zero: it does not lead to
a change in action so (1.3) is zero. On the other hand, a test that is likely to change
the doctor’s action will likely have a high value of information.

12 Chapter 1. Multiagent Problem Formulation

Figure 1.1: Graphical repre-
sentation of a sample Markov

decision process along with
values for the transition

and reward functions. We
let the start state be s1.

s1

s2 s3

s4

a
1

:0
.8

a1 : 0.2
a2 : 0.2

a2 : 0.8

a
3

:0.8

a2 : 0.8a2 : 0.2
a3 : 0.2

a4 : 1

a
3

:1

a
1

:0
.9

a1 : 0.1
a4 : 0.2a4 : 0.8

si a sj T (si, a, sj)

s1 a1 s1 0.2
s1 a1 s2 0.8
s1 a2 s1 0.2
s1 a2 s4 0.8
s2 a2 s2 0.2
s2 a2 s3 0.8
s2 a3 s2 0.2
s2 a3 s1 0.8
s3 a4 s2 1
s3 a3 s4 1
s4 a1 s4 0.1
s4 a1 s3 0.9
s4 a4 s4 0.2
s4 a4 s1 0.8

s r(s)

s1 0
s2 0
s3 1
s4 0

1.2 Markov Decision Processes

Andrey Markov. –.

So far we have assumed that only the agent can change the state of the world. But,
the reality in most cases is that agents inhabit an environment whose state changes
either because of the agent’s action or due to some external event. We can think
of the agent sensing the state of the world then taking an action which leads it to
a new state. We also make the further simplifying assumption that the choice of
the new state therefore depends only on the agent’s current state and the agent’s
action. This idea is formally captured by a Markov decision process or mdp.

Markov decision process

Definition 1.1 (Markov Decision Processess). An mdp consists of an initial state
s1 taken from a set of states S, a transition function T (s, a, s′) and a reward function
r : S → <.

The transition function T (s, a, s′) gives us the probability that an agent in state
s who takes action a will end up in state s′. For a purely deterministic world

deterministic we have that this function will be zero for all s′ of each given s, a pair except
one, for which it will be one. That is, in a deterministic world an agent’s action
has a completely predictable effect. This is not the case for a non-deterministic

non-deterministic
environment where an agent’s action could lead to a number of different states,
depending on the value of this fixed probability function.

Figure 1.1 shows a typical visualization of an mdp, this one with four states.
Notice that in this example the agent’s actions are limited based on the state, for
example, in state s1 the agent can only take actions a1 and a2. Also note that when
the agent is in state s1 and it takes action a1 there is a 0.2 probability that it will
stay in the same state. In this example the agent receives a reward of 1 only when
it reaches s3, at which point its only option is to leave s3.

The agent’s behavior is captured by a policy which is a mapping from states to
policy

actions. We will use π to denote the agent’s policy. The agent’s goal then becomes
that of finding its optimal policy which is the one that maximizes its expected

optimal policy
utility, as we might expect a selfish agent to do. This strategy is known as the
principle of maximum expected utility. Agent i’s optimal policy can thus be

maximum expected
utility

defined as

π∗i (s) = arg max
a∈A

E[ui, s, a]. (1.4)

But, in order to expand the expected value within that equation we must first
determine how to handle future rewards. That is, is it better to take 100 actions
with no reward just to get to a state which gives the agent a reward of 100, or is

1.2. Markov Decision Processes 13

it better to take 100 actions each of which gives the agent a reward of 1? Since no
agent is likely to live forever we will not want to wait forever for that big reward.
On the other hand, it seems reasonable to give up a small reward in the next couple
of steps if we know there is a very big reward afterwards. As such, we generally
prefer to use discounted rewards which allow us to smoothly reduce the impact

discounted rewards
of rewards that are farther off in the future. We do this by multiplying the agent’s
future rewards by an ever-decreasing discount factor represented by γ, which is a

discount factor
number between zero and one.

For example, if an agent using policy π, starts out in state s1 and visits states
s1, s2, s3, . . . then we say that its discounted reward is given by

γ0r(s1) + γ1r(s2) + γ2r(s3) + · · · (1.5)

Note, however, that we only know s1. The rest of the states, s2, s3, . . . depend on
the transition function T . That is, from state s1 we know that the probability of
arriving at any other state s′ given that we took action a is T (s, a, s′) but we do
not know which specific state the agent will reach. If we assume that the agent is
an utility maximizing agent then we know that it is going to take the action which
maximizes its expected utility. So, when in state s the agent will take action given
by (1.4), which when expanded using (1.2) gives us

π∗(s) = arg max
a

∑
s′

T (s, a, s′)u(s′), (1.6)

where u(s′) is the utility the agent can expect from reaching s′ and then continuing

Richard Bellman. –.

Norbert Wiener prize, IEEE

Medal of Honor.

on to get more rewards for successive states while using π∗. We can now work
backwards and determine what is the value of u(s). We know that when the agent
arrives in s it receives a reward of r(s), but we now also know that because it is in s
it can take its action based on π∗(s) and will get a new reward at the next time. Of
course, that reward will be discounted by γ. As such, we can define the real utility
the agent receives for being in state s as

u(s) = r(s) + γmax
a

∑
s′

T (s, a, s′)u(s′). (1.7)

This is known as the Bellman equation and it captures the fact that an agent’s
Bellman equationutility depends not only on its immediate rewards but also on its future discounted

rewards. Notice that, once we have this function defined for all s then we also have
the agent’s true optimal policy π∗(s), namely, the agent should take the action
which maximizes its expected utility, as given in (1.6).

The problem we now face is how to calculate u(s) given the mdp definition.
One approach is to solve the set of equations formed. Given n states we have n
Bellman equations each one with a different variable. We thus have a system of n
equations with n variables so, theoretically, we can find values for all these variables.
In practice, however, solving this set of equations is not easy because of the max
operator in the Bellman equation which makes the equations non-linear.

Another approach for solving the problem is to use value iteration. In this
value iteration

method we start by setting the values of u(s) to some arbitrary numbers and then
iteratively improve these numbers using the Bellman update equation:

Bellman update

ut+1(s)← r(s) + γmax
a

∑
s′

T (s, a, s′)ut(s′). (1.8)

The reader will notice that this equation is nearly the same as (1.7), except that we
are now updating the u values over time. It has been shown that this process will
eventually, and often rapidly, converge to the real values of u(s). We also know that
if the maximum change in utility for a particular time step is less than ε(1− γ)/γ
then the error is less than ε. This fact can be used as a stopping condition.

valueiterThe value-iteration algorithm is shown in figure 1.2. This algorithm is in-
stance of dynamic programming in which the optimal solution to a problem is

dynamic programming

http://jmvidal.cse.sc.edu/netlogomas/valueiter.html

14 Chapter 1. Multiagent Problem Formulation

Figure 1.2: The value-
iteration algorithm. It takes

as input an mdp given by T (·),
a discount value γ, and an

error ε. It returns a u(s) for
that mdp that is guaranteed
to have an error less than ε.

value-iteration(T, r, γ, ε)
1 do
2 u← u′

3 δ ← 0
4 for s ∈ S
5 do u′(s)← r(s) + γmaxa

∑
s′ T (s, a, s′)u(s′)

6 if |u′(s)− u(s)| > δ
7 then δ ← |u′(s)− u(s)|
8 until δ < ε(1− γ)/γ
9 return u

Figure 1.3: Example applica-
tion of the value-iteration
algorithm to the MDP from
figure 1.1, assuming γ = .5
and ε = .15. The algorithm
stops after t = 4. The bot-

tom table shows the optimal
policy given the utility val-

ues found by the algorithm.

Time (t)

0 1 2 3 4

u(s1) 0 0 0 .5(.8).45 = .18 .5(.09 + .378) = .23
u(s2) 0 0 .5(.8)1 = .4 .5(.88)1 = .44 .5(.18 + .98) = .57
u(s3) 0 1 1 1 + .5(1).45 = 1.2 1 + .5(.47) = 1.2
u(s4) 0 0 .5(.9)1 = .45 .5(.9 + .045) = .47 .5(1.1 + .047) = .57

s π∗(s)

s1 a2

s2 a2

s3 a3

s4 a1

found by first finding the optimal solutions to sub-problems. In our case, the sub-
problems are the variables themselves. Finding a value for one variable helps us find
values for other variables.

For example, figure 1.3 shows how the utility values change as the value-
iteration algorithm is applied to the example from figure 1.1. The utilities start
at 0 but s3 is quickly set to 1 because it receives a reward of 1. This reward then
propagates back to its immediate neighbors s2 and s4 at time 2 and then at time 3 it
reaches s1. At time 4 the algorithm stops because the biggest change in utility from
time 3 to time 4 was 0.13, for s4, which is less than or equal to ε(1− γ)/γ = .15.

1.2.1 Multiagent Markov Decision Processes

The mdp model represents the problems of only one agent, not of a multiagent
system. There are several ways of transforming an mdp into a multiagent mdp.
The easiest way is to simply place all the other agents’ effects into the transition
function. That is, assume the other agents don’t really exist as entities and are
merely part of the environment. This technique can work for simple cases where the
agents are not changing their behavior since the transition function in an mdp must
be fixed. Unfortunately, agents that change their policies over time, either because
of their own learning or because of input from the users, are very common.

A better method is to extend the definition of mdp to include multiple agents
all of which can take an action at each time step. As such, instead of having a
transition function T (s, a, s′) we have a transition function T (s,~a, s′), where ~a is a
vector of size equal to the number of agents where each element is an agent’s action,
or a symbol representing non-action by that agent. We also need to determine how
the reward r(s) is to be doled out amongst the agents. One possibility is to divide
it evenly among the agents. Unfortunately, such a simplistic division can mislead
agents by rewarding them for bad actions. A better method is to give each agent
a reward proportional to his contribution to the system’s reward. We will see how
this can be done in chapter 5.6.

1.3. Planning 15

1.2.2 Partially Observable MDPs

In many situations it is not possible for the agent to sense the full state of the world.
Also, an agent’s observations are often subject to noise. For example, a robot has
only limited sensors and might not be able to see behind walls or hear soft sounds
and its microphone might sometimes fail to pick up sounds. For these scenarios we
would like to be able to describe the fact that the agent does not know in which
state it is in but, instead, believes that it can be in any number of states with certain
probability. For example, a robot might believe that it is in any one of a number of
rooms, each with equal probability, but that it is definitely not outdoors. We can
capture this problem by modeling the agent’s belief state ~b instead of the world

belief state
state. This belief state is merely a probability distribution over the set of possible
states and it indicates the agent’s belief that it is in that state. For the case with
four states, the vector ~b = 〈 12 ,

1
2 , 0, 0〉 indicates that the agent believes it is either in

s1 or s2, with equal probability, and that it is definitely not in s3 or s4.
We also need an observation model O(s, o) which tells the agent the proba-

observation model
bility that it will perceive observation o when in state s. The agent can then use the
observations it receives to update its current belief ~b. Specifically, if the agent’s cur-
rent belief is ~b and it takes action a then its new belief vector ~b′ can be determined
using

∀s′ ~b′(s′) = αO(s′, o)
∑
s

T (s, a, s′)~b(s), (1.9)

where~b(s) is the value of~b for s and α is a normalizing constant that makes the belief
state sum to 1. When we put all these requirements together we have a partially
observable Markov decision process or pomdp which are a very natural way

partially observable
Markov decision process

of describing the problems faced by an agent with limited sensors. Of course, since
the agent does not know the state then it cannot use value iteration to solve this
problem.

Luckily, it turns out that we can use (1.9) to define a new transition function

τ(~b, a,~b′) =
{ ∑

s′ O(s′, o)
∑
s T (s, a, s′)~b(s) if (1.9) is true for ~b, a,~b′

0 otherwise,
(1.10)

and a new reward function

ρ(~b) =
∑
s

~b(s)r(s). (1.11)

Solving a pomdp on a physical state amounts to solving this mdp on the be-
lief state. Unfortunately, this mdp can have an infinite number of states since the
beliefs are continuous values. Luckily, there do exist algorithms for solving these
type of mdps. These algorithms work by grouping together beliefs into regions and
associating actions with each region. In general, however, when faced with a pomdp

See (Russell and Norvig, 2003,

Chapter 17.5) for introduction

to dynamic decision networks.problem it is usually easier to use a dynamic decision networks to represent and
solve the problem.

1.3 Planning

In the artificial intelligence planning problem an agent is also given a set of
artificial intelligence

planning
possible states and is asked for a sequence of actions that will lead it to a desirable
world state. However, instead of a transition function the agent is given a set of
operators. Each operator has pre-requisites that specify when it can be used—in
which states—and effects which specify the changes the operator will cause in the
state. The planning problem is to find a sequence of operators that take the agent
from the start state to the goal state.

It should be clear that this problem is a special case of an mdp, one where
only one state provides a reward and all the transitions have probability of 1 or 0.
The transitions are generated by applying the operators to the current state. By

16 Chapter 1. Multiagent Problem Formulation

describing the problem using operators we achieve a much more succinct definition
of the problem than by enumerating all states and transition probabilities as done
in an mdp. Still, our goal is solving the problem, not defining it with as few bits
as possible. The more detailed description of the states does, however, provide an
advantage over the simple state listing used in mdp, namely, it provides added
information about the composition of the state. For example, if we want to reach
a state that has properties of is-blue? and is-wet? then we can use this knowledge
to set about getting the state of the world blue and, once that is done, to get
it wet without changing its color. This kind of information is opaque in a mdp
description which simply describes a wet blue state as s11 and a dry blue state as
s23. Operators and their corresponding state descriptions thus provide the agent
with more knowledge about the problem domain.

There exists many planning algorithms which solve the basic planning problem
and variations of it, including cases where there is a possibility that the operators
don’t have the desired effect (making it even more like an mdp), cases where the
agent must start taking actions before the plan can be finished, and cases where
there is uncertainty as to what state the agent is in (like pomdp). Most modern
planning algorithms use a graphical representation of the problem. That is, they end
up turning the problem into an mdp-like problem and solving that. These algorithms
are sophisticated and are available as libraries to use with your programs. If the

See (Russell and Norvig, 2003,

Chapters 11–12) for pointers

to these programs. need arises to solve a planning problem or an mdp it is advisable to use one of the
many available libraries or, at worst, implement one of the published algorithms
rather than trying to implement your own.

1.3.1 Hierarchical Planning

A very successful technique for handling complexity is to recursively divide a prob-
lem into smaller ones until we find problems that are small enough that they can
be solved in a reasonable amount of time. This general idea is known as the divide
and conquer approach in ai. Within planning, the idea can be applied by devel-

divide and conquer
oping plans whose primitive operators are other plans. For example, in order to
achieve your goal of a holiday at the beach you must first arrange transportation,
arrange lodging, and arrange meals. Each one of these can be further decomposed
into smaller actions, and there might be different ways of performing this decompo-
sition. Within the planning model this amounts to building virtual operators which
are planning problems themselves, instead of atomic actions. The problem then be-
comes one of deciding which virtual operators to build. In fact, the problem is very
similar to that of deciding which functions or classes to write when implementing a
large software project.

Within the mdp model we can imagine building a hierarchy of policies, each one
taking of from states that fit a particular description (say, dry states) to other types
of states (say, red and wet). We can then define new mdp problems which use sets
of states as atomic states and the new policies as transition functions, similar to
how we built pomdps. These techniques are studied in hierarchical learning.

hierarchical learning
Hierarchical planning and learning are usually studied as ways of making the

planning and learning problems easier, that is, as ways to develop algorithms that
will find solutions faster. However, once developed these hierarchies provide added
benefits in a multiagent system. Specifically, they can be used to enable coordina-
tion among agents (Durfee, 1999). By exchanging top-level plan names (or policies)
the agents have a general idea of what each other is doing without the need for
exchanging detailed instructions of what they are doing at each step. For example,
with two robots moving boxes in a room one might tell the other that its mov-
ing a box from the South corner to the East corner, the other agent then knows
that if it stays in the Northwest part of the room it does not need to worry about
the exact location of its partner—the robots stay out of each other’s way without
detailed coordination. This technique of using goal/plan/policy hierarchies for mul-
tiagent coordination has been very successful. We will examine it in more detail in

1.4. Summary 17

Chapter 9.

1.4 Summary

The view of an autonomous agent as an utility-maximizing agent that inhabits an
mdp, or variation thereof, is most popular because of its flexibility, applicability
to disparate domains, and amenability to formal analysis with mathematical or
computational tools. As such, this book will largely adopt this model as the basis for
formulating the various multiagent problems. Note, however, that the mdp is a tool
for describing the problem faced by an agent. In practice, it is rare that a practical
solution to a real world problem is also implemented as an algorithm to solve the
raw mdp. More commonly we find algorithms which use a much more succinct,
and therefore practical, method for representing the problem. Unfortunately, these
representations tend to be very domain specific; they cannot be used in different
domains.

Exercises

1.1 Marvin is a robot that inhabits a 3 by 3 grid and can only move North, South,
East, and West. Marvin’s wheels sometimes spin so that on each action there
is a .2 probability that Marvin remains stationary. Marvin receives a reward
of 1 whenever it visits the center square.

1. Draw an mdp which describes Marvin’s problem.

2. What is the optimal policy?

1.2 The dynamic programming approach can be used to solve a wide variety
of problems. For example, the Google search engine ranks results using the
PageRank algorithm in which the pagerank of a webpage is proportional to
the number of other pages that link to it weighted by their own pagerank.
Thus, the pagerank can be calculated using a simple variation of the value
iteration algorithm. However, one problem is that we do not know how long
it will take for the algorithm to converge.

Implement the value-iteration algorithm from figure 1.2 and run experi-
ments to determine how much time it takes to converge as you increase the
number of states given a fixed edge to node ratio. Try different ratios.

1.3 You have a table with three blocks: A, B, C. Assume the state of the world is
completely defined by the position of the blocks relative to each other, where a
block can only be on the table on on top of another block. At most one block
can be on top of another block block. You are further given the following
operators:

• move-to-table(block): Requires that block has no other block on top
of it. Results in the block now being on the table.

• move-to-block(b1 , b2): Requires that block b2 not have any other
block on top of it. Results in block b1 being on top of block b2 .

Draw an mdp for this domain assuming operators always have their intended
results.

1.4 Implement a NetLogo program where the patches are randomly set to one of
three colors: black, red, and green.There is a turtle in this world who can only
move North, South, East, and West by one patch at a time. Each time it lands
in a patch it receives a reward determined by the color of the patch: black is
0, red is -1, and green in 1.

The turtle’s movement is noisy, so when it decides to move North it ends up
at the desired North tile with probability .5, and the tile NorthEast of its

18 Chapter 1. Multiagent Problem Formulation

current location (a diagonally adjacent tile) with probability .25, and at the
tile NorthWest of its current location with a probability of .25.

Implement the value-iter algorithm for this domain and find the optimal
policy.

Chapter 2

Distributed Constraints

Most multiagent systems are characterized by a set of autonomous agents each
with local information and ability to perform an action when the set of actions of
all must be coordinated so as to achieve a desired global behavior. In all these cases
you own all the agents in question and can program them to do whatever you want.
Thus, there is no need to properly incentivise them as there would be in an open
system, which we study in later Chapters. However, there is still the problem of
coordination. Since each agent only has local information it might be hard for it to
decide what to do.

In this chapter we look at some algorithms for performing distributed search in
cooperative multiagent systems where each agent has some local information and
where the goal is to get all the agents to set themselves to a state such that the set
of states in the system is optimal. For example, imagine a group of small sensors in
a field. Each sensor can communicate only with those that are near him and has to
decide which of its modalities to use (sense temperature, point radar North, point
radar South, etc.) so that the group of sensors gets a complete view of the important
events in the field. Or, imagine a group of kids who have been told to stand in a circle,
each one must move find a spot to stand on but the position of that spot depends
on everyone else’s location. In these examples the agents have local information, can
take any one of their available actions at any time, but the utility of their actions
depends on the actions of others. We find that many multiagent problems can be
reduced to a distributed constraints problem. Thus, the algorithms we present in
this chapter have many different applications.

2.1 Distributed Constraint Satisfaction

We start by formally describing the problem. In a constraint satisfaction prob-
lem (csp) we are given a set of variables, each with its own domain along with a

constraint satisfaction
problem

set of constraints. The goal is to set every variable to a value from its domain such
that no constraints are violated. Formally,

Definition 2.1 (Constraint Satisfaction Problem). Given a set of variables x1,
x2,. . . ,xn with domains D1, D2, . . . , Dn and a set of boolean constraints P of the
form pk(xk1, xk2, . . . , xkj)→ {0, 1}, find assignments for all the variables such that
no constraints are violated.

The most widely studied instance of a constraint satisfaction problem is the
graph coloring problem, shown in figure 2.1. In this problem we are given a graph
and a set of colors. The problem is to find out if there is a way to color each node
with one of the given colors such that no two nodes that are connected by an edge
have the same color. We can easily map the graph coloring problem to the formal
definition of a csp by considering each node to be a variable, the domains to be
the set of colors, and each edge becomes a constraint between its two nodes that is
true only if their values are different. Notice that, in graph coloring constraints are
only over two variables instead of over any set of variables as we find in the general
constraint satisfaction problem.

The constraint satisfaction problem is NP-complete. As such, me use search
algorithms to find a solution and hope that the actual running time will be less than

19

20 Chapter 2. Distributed Constraints

Figure 2.1: Sample graph
coloring problem. You must

color each node either black,
white, or gray so that no

two nodes connected by an
edge have the same color.
Can you find a coloring?

Figure 2.2: A centralized
depth first search algorithm

for the csp. Variable g
holds the partial assign-
ment of variable values.

The algorithm is called with
depth-first-search-csp(1, ∅).

depth-first-search-csp(i, g)
1 if i > n
2 then return g
3 for v ∈ Di

4 do if setting xi ← v does not violate any constraint in P given g
5 then g′ ← depth-first-search-csp(i+ 1, g + {xi ← v})
6 if g′ 6= ∅
7 then return g′

8
9 return ∅

the worst-case exponential time. In practice we find that there are many special cases
where we can solve the problem really fast. For example, in the n-queens problem

n-queens problem
we are given an 8 × 8 chess board with 8 queens for which we must find places on
the board such that no queen can take another queen. This problem is a special
case of the csp but it is one for which there are algorithms that can find a solution
very quickly for large numbers of queens as the problem is under constrained.

A simple but effective method for solving the centralized constraint satisfaction
problem is with the use of a depth first search algorithm, as shown in figure 2.2.

depth first search
The algorithm simply chooses an arbitrary ordering for the variables. On each call

A common modification is to

improve the variables’

ordering.

it tries to set the current variable xi to all its possible values to see which ones
do not violate any of the constraints in P given the partial variable assignment g.
Whenever a value v works, the algorithm adds that assignment to g and recursively
tries to assign the next variable in the list. This algorithm performs a complete
search and is thus guaranteed to find a solution if one exists. Depth first search is
also practical because it only requires an amount of memory that is linear on the
number of variables, that is, it has O(n) memory usage. As we shall see later in this
chapter, some of the distributed algorithms try to parallelize this basic algorithm.

In the distributed constraint satisfaction (dcsp) problem we give each agent
distributed constraint
satisfaction

one variable. The agent is responsible for setting the value of its own variable. The
agents do not know the values of any other variable but can communicate with
other agents. Formally, we define:

Definition 2.2 (Distributed Constraint Satisfaction Problem). Give each agent
one of the variables in a csp. Agents are responsible for finding a value for their
variable and can find out the values of the other agents’ variables via communication

Usually the agents are limited so that they can only communicate with their
neighbors—the agents with whom they share a constraint. Some algorithms, how-
ever, allow agents to communicate with any other agent. Also, most algorithms
assume that the agents know about all the constraints that involve their variable.

The dcsp is pervasive in multiagent research and many real-world problems can
be reduced to a dcsp, or a variation thereof. As such, many dcsp algorithms have

2.1. Distributed Constraint Satisfaction 21

filtering()
1 for j ∈ {neighbors of i} � i is this agent.
2 do revise(xi, xj)

handle-new-domain(j,D′)
1 Dj ← D′

2 revise(xi, xj)

revise(xi, xj)
1 old -domain ← Di

2 for vi ∈ Di

3 do if there is no vj ∈ Dj consistent with vi
4 then Di ← Di − vi
5 if old -domain 6= Di

6 then ∀k∈{neighbors of i}k.handle-new-domain(i,Di)

Figure 2.3: The filtering algo-
rithm. Each agent i executes
filtering().

been developed, each one with its own set of strengths and weaknesses. In the next
sections we examine some of the most popular algorithms.

2.1.1 Filtering Algorithm

Picture yourself as one of the agents. You know your constraints, the domain of
your variable, and the domain of the variables of your neighbors. You can use
this information to determine if any of the values from your variable’s domain is
impossible. That is, if there is a value which violates some constraint no matter
what value one of your neighbors uses then that value will clearly not be part of
the solution so you can get rid of it. Similarly, all other agents might do the same.

This idea is implemented by the filtering algorithm (Waltz, 1975) shown in
filtering algorithm

figure 2.3. Every agent i executes the filtering procedure which leads it to do a
revise with every one of its neighbors’ variables xj . If the agent does succeed in
eliminating one or more values from its domain it then tells its neighbors its new
domain. When an agent receives new domains from its neighbors it again executes
revise for those neighbors. This process repeats itself until all agents finish their
computations and no more messages are sent.

The filtering algorithm is guaranteed to stop since there are only a finite number
of values in all the domains and the algorithm only sends a message when a value is
eliminated from a domain. Once it stops, the filtering algorithm might have reduced
the size of some domains. Unfortunately, it might stop at a point where one or more
of the agents still has many values in its domain. Thus, it can stop before a solution
is found.

Figure 2.4 shows an example of the filtering algorithm as applied to the graph
coloring problem. In this problem the agents have three possible colors but start out
with already limited domains as indicated by the black crosses. For example, agent
x1 can only be either black or gray. At the first step x1 executes revise(x1, x3) and
realizes that since x3 must be gray that it cannot be gray. As such, it eliminates
gray from its domain and tells all the other agents about this. The other agents
incorporate this knowledge. Then, agent x2 does a revise(x2, x3) and realizes that
it also can’t be gray and thus eliminates gray from its domain. At this point x2

knows the final configuration. When it tells the other agents about its new domain
then all the agents will also know the final solution.

In this example the filtering algorithm found a specific solution. Unfortunately,
this is a rare occurrence. More often we find that the filtering algorithm only slightly
reduces the size of the domains. For example, if we run the example from figure 2.4
but start with all possible colors in all domains then the filtering algorithm will not
be able to do anything. That is, none of the agents are able to eliminate any color

22 Chapter 2. Distributed Constraints

Figure 2.4: Filtering exam-
ple. The agents start out with

some prohibited colors as in-
dicated by the black crosses.
On the first step x1 does his

revise and eliminates the
color gray from considera-
tion. It then tells everyone

else about this. Then x2 does
its revise and eliminates the
color gray from its domain.

x1

x2 x3

x3

x2

x1

 #

x3

x2

x1

 #

x3

x2

x1

 #

1: revise(x1, x3)

2: revise(x2, x3)

Figure 2.5: Example of a
problem that does not have
a solution and the filtering
algorithm cannot that fact.

x1

 #

x2

 #

x3

 #

from their domain because many colorings are possible.
The filtering algorithm might also fail to eliminate values from the domains

even when no coloring exists. That is, the filtering algorithm cannot reliably detect
problems that do not have a solution. This problem can be illustrated with the
example in figure 2.5. Here the nodes have to choose between either white or black.
We know that there is no possible way to color these nodes without violating a
constraint. However, the filtering algorithm will get stuck at the first step in this
example and will not be able to reduce the size of the domains. Namely, each agent
considers that if he is black then the other two could be white and if he is white then
the other two could be black. As such, no agent eliminates colors from its domain.

2.1.2 Hyper-Resolution Based Consistency Algorithm

The reason the filtering algorithm fails for this example is because the revise
function considers only the agent’s own value and one other agent’s value at a
time. More generally, we need to consider the agent’s value against all possible
combinations of the values of two of its neighbors, of three of its neighbors, and so
on all the way to considering the values of all of its neighbors at the same time.

More formally, we say that if an agent can find a suitable value regardless of the
values of k of its neighbors then it can be consistent with anything they might do.
If we can say this for all agents then we have achieved k-consistency.

k-consistency
Definition 2.3 (k-consistency). Given any instantiation of any k−1 variables that
satisfy all constraints it is possible to find an instantiation of any kth variable such
that all k variable values satisfy all constraints.

If we can prove that problem is j-consistent for j = 2, 3, . . . up to some number
k then we could say that the problem is strongly k-consistent.

2.1. Distributed Constraint Satisfaction 23

x1 x2 x3

x1 = # ∨ x1 = x2 = # ∨ x2 = x3 = # ∨ x3 =
¬(x1 = # ∧ x2 = #) ¬(x1 = # ∧ x2 = #) ¬(x1 = # ∧ x2 = #)

Time ¬(x1 = ∧ x2 =) ¬(x1 = ∧ x2 =) ¬(x1 = ∧ x2 =)

1 ¬(x2 = # ∧ x3 =) ¬(x2 = # ∧ x3 =) ¬(x2 = # ∧ x3 =)
2 ¬(x2 = ∧ x3 = #) ¬(x3 =) ¬(x2 = ∧ x3 = #)
3 ¬(x2 = ∧ x3 = #) ¬(x3 = #)
4 ¬(x3 = #) ¬(x3 =)

Table 2.1: Example databases
for a sample run of the hyper-
resolution based consistency
algorithm as applied to the
graph of figure 2.5. Only a
few of the nogoods produced
by the graph’s constraints
are shown due to space con-
straints. You can infer the
rest. New statements are
added starting at time 1.

Definition 2.4 (Strongly k-consistent). A problem is strongly k-consistent if it is
j-consistent for all j ≤ k.

We now face the problem of proving that a particular dcsp is strongly k-
consistent. Notice that the filtering algorithm guarantees 2-consistency since it
ensures that all agents can find a value regardless of the value any one of their
neighbors might set. We need to extend this procedure to more than one neighbor.
This can be done using the hyper-resolution rule.

hyper-resolution rule

Definition 2.5 (Hyper-Resolution Rule).

A1 ∨A2 ∨ · · · ∨Am
¬(A1 ∧A11 ∧ · · ·)
¬(A2 ∧A21 ∧ · · ·)

:
¬(Am ∧Am1 ∧ · · ·)

¬(A11 ∧ · · · ∧A21 ∧ · · · ∧Am1 ∧ · · ·)
.

The hyper-resolution rule is a simple deduction rule from formal logic whose
form just so happens to correspond exactly to what we need. The idea is that the
agents’ domains can be represented as an OR statement like the first one in the
rule. For example, if agent x1 can be either gray, black, or white then we write
x1 = gray ∨ x1 = black ∨ x1 = white. The constraints are represented as negations
like the one in the second line of the hyperesolution rule. For example, if there is
a constraint that says that x1 and x2 cannot both be white we would write that
as ¬(x1 = white ∧ x2 = white. Once we have represented both the domain and the
constraints in this logical form then we can use the hyper-resolution rule to generate
new constraints which are added to the agent’s knowledge and communicated to
the other agents. Each one of these new constraints is called a nogood.

nogood
We can use the hyper-resolution rule to implement a distributed constraint sat-

isfaction algorithm that, unlike the filtering algorithm, will detect all cases where
there is no solution and will find a solution when there is one. The algorithm is
basically the same as the filtering algorithm but we modify the revise function
to instead use the hyper-resolution to generate new nogoods. These nogoods are
then sent to the other agents. When an agent receives nogoods from other agents
it adds them to its set of nogoods. The process continues until no new nogoods can
be derived by any agent or until a contradiction is reached. When a contradiction
is found it means that no solution exists to this problem.

We now show how the hyper-resolution algorithm would solve the problem from
figure 2.5. Table 2.1 shows a few of the initial statements in the agents’ databases.
Note that many of the nogoods are missing due to space limitations but you can
easily infer them as they correspond to the constraints in the problem. One possible
run of the algorithm is as follows:

Let x1 start out by doing

24 Chapter 2. Distributed Constraints

x1 = # ∨ x1 =
¬(x1 = # ∧ x2 = #)
¬(x1 = ∧ x3 =)

¬(x2 = # ∧ x3 =)

at time 1. It then sends ¬(x2 = # ∧ x3 =) to x2 and x3. x2 then can do

x2 = # ∨ x2 =
¬(x2 = # ∧ x3 =)
¬(x2 = ∧ x3 =)

¬(x3 =)

Meanwhile, x1 can do

x1 = # ∨ x1 =
¬(x1 = ∧ x2 =)
¬(x1 = # ∧ x3 = #)

¬(x2 = ∧ x3 = #)

x1 then sends the nogood ¬(x2 = ∧ x3 = #) to x2 and x3. Using this message,
x2 can now do

x2 = # ∨ x2 =
¬(x2 = # ∧ x3 = #)
¬(x2 = ∧ x3 = #)

¬(x3 = #)

x2 then sends ¬(x3 = #) and ¬(x3 =) to x3. Using this message, x3 can then do

x3 = # ∨ x3 =
¬(x3 = #)
¬(x3 =)

Contradiction

This last step derives a contradiction which means that the algorithm has been able
to prove that no solution exists.

In practice, the hyper-resolution algorithm is very slow because there is often
little guidance as to which nogoods should be derived first. That is, at any one time
each agent can derive a large number of different nogoods. Most of these are useless
to the other agents and there is no easy way for the agent to determine which
nogoods might be most useful since that would require that it also know about
the other agents’ databases. As such, we find that in practice the hyper-resolution
algorithm spends a lot of time deriving useless nogoods. This is especially true as
the size of the nogoods—their number of terms—increases. Also, if the problem
does have a solution then the algorithm only stops when all the agents prove to
themselves that they cannot generate any new nogood, which can take a very long
time. In summary, hyper-resolution in its raw form is impractical for most cases
with the possible exception of highly over-constrained problems.

2.1.3 Asynchronous Backtracking

Earlier, in figure 2.2, we saw a depth first search algorithm for solving a constraint
satisfaction problem. The algorithm sets a variable to a specific value and, recur-
sively, tries to set a new variable to some value which would not violate any of the
constraints with existing values. If no such value exists the algorithm backs up and
re-sets one of the variables it has already set. This type of depth first search is also
known as a backtracking algorithm because we set the variables to some values

backtracking
and then if there is a conflict we backtrack, unset variables, and try again with
different values.

2.1. Distributed Constraint Satisfaction 25

The asynchronous backtracking algorithm (abt), is a distributed asynchro-
asynchronous
backtracking

nous version of the centralized depth first search algorithm for constraint satisfaction
(Yokoo and Hirayama, 2000). abt performs the same kind of search but it does so
via the use of messages between agents and under the understanding that only the
owner of the variable can change its value.

The abt algorithm also implements some performance improvements on the
basic depth first search. As we mentioned earlier, there is often much to be gained
by properly ordering the variables. In general, we want to place variables that are
involved in more constraints towards the top of the tree and search them first so as
to avoid having to do some backtracking later on. This heuristic has been shown to
work well and is employed by abt.

Each agent i in abt is responsible for variable xi. All agents are given a fixed
priority ordering, from 1 to n. Each agent i can change the value of its variable xi.
The agents keep track of the others’ variables in local -view . The list of neighbors
is initially set to be just the other agents with whom the agent shares a constraint
but, as we will see, this list can grow. The agents find out other agents’ variable
values by sending messages. There are only three types of messages that abt sends.
Thus, only three remote procedures need to be implemented.

1. handle-ok?(j, xj) where j is the name of another agent and xj is its current
variable value. This message asks the receiver if that assignment does not
violate any of his constraints.

2. handle-nogood(j,nogood) which means that j is reporting that it can’t find
a value for his variable because of nogood.

3. handle-add-neighbor(j) which requests the agent to add some other agent
j as its neighbor. This message is handled by simply adding that agent to
neighbors.

The full algorithm can be seen in figure 2.6. All agents start out by setting their
xi variable to some value and then asking all their neighbors to handle-ok? After
that they become event-driven, handling messages as they arrive. abt assumes that
messages are never lost and arrive and in the same order they were sent.

The procedure check-local-view checks that the agent’s current value xi is
consistent with the values it thinks its neighbors have. If not then it checks to see
if it can find some other value that will work. If it can’t find one then this means it
must backtrack and find a new value. If it can then it sets xi to that value and
informs its neighbors.

Nogoods are handled by handle-nogood. The first thing this procedure does
is to see if any of the agents in the nogood is not in neighbors so it can add it. This
step is needed to ensure the algorithm will arrive at a correct answer. The nogood
is added to the set of constraints and check-local-view is called to ensure there
are no conflicts.

Finally, the backtrack procedure is responsible for generating and sending
new nogoods. As we saw, it is only called when there is no way for the agent to
set is value so that no constraints are violated. This means that someone else must
change their value. That someone else is the agent with the lowest priority in the
nogood. backtrack first uses the hyper-resolution rule (or similar) to generate one
or more nogoods. Each one of these nogoods is then sent to the agent in that nogood

Some versions of abt use one

nogood in line 1 of

backtrack, others use more.that has the lowest priority. Also, if the hyper-resolution generated a contradiction,
represented as an empty set then this means that no solution exists and thus the
algorithm is terminated.

Notice that, since the nogoods are always sent to the lowest priority agent and
the agents have linear priorities, the nogoods always flow from the high priority
agents to the low priority agents. Namely, the highest priority agent will never
receive a nogood, the second highest priority agent will only receive nogoods from
the highest priority agent, and so on. This suggests to us that the lower priority
agents will end up doing more work.

ABTgc

http://jmvidal.cse.sc.edu/netlogomas/ABTgc.html

26 Chapter 2. Distributed Constraints

Figure 2.6: abt algorithm. All
agents start by setting them-

selves to some color and in-
voking a handle-ok? on all

their neighbors. After this
they become event driven.

handle-ok?(j, xj)
1 local -view ← local -view +(j, xj)
2 check-local-view()

check-local-view()
1 if local -view and xi are not consistent
2 then if no value in Di is consistent with local -view
3 then backtrack()
4 else select d ∈ Di consistent with local -view
5 xi ← d
6 ∀k∈neighbors k.handle-ok?(i, xi)

handle-add-neighbor(j)
1 neighbors ← neighbors +j

handle-nogood(j,nogood)
1 record nogood as a new constraint
2 for (k, xk) ∈ nogood where k /∈ neighbors
3 do k.handle-add-neighbor(i)
4 neighbors ← neighbors +k
5 local -view ← local -view +(k, xk)
6 old -value ← xi
7 check-local-view()
8 if old -value 6= xi
9 then j.handle-ok?(i, xi)

backtrack()
1 nogoods← {V |V = inconsistent subset of local -view using hyper-resolution rule}
2 if an empty set is an element of nogoods
3 then broadcast that there is no solution
4 terminate this algorithm
5 for V ∈ nogoods
6 do select (j, xj) where j has lowest priority in V
7 j.handle-nogood(i, V)
8 local -view ← local -view −(j, xj)
9 check-local-view()

Figure 2.7: abt example.
The numbers preceding each

message indicate the time
at which the particular ac-

tion took place. Only the
first six steps are shown.

x1

 #

x2

 #

x3

x2 x3

1:
: o

k?
(x

2
,#

) 1: ok?(x
3 ,

)

2: local -view = (x2,#), (x3,)

3: nogood(x
2 =

#
∧
x

3 =

)4: Added link

5: ok?(x2,#)

5: local -view = (x2,#)
6: nogood(x2,#)

2.1. Distributed Constraint Satisfaction 27

An example of abt at work can be seen in figure 2.7. Here agents x2 and x3 start
by setting their colors to be gray and black, respectively, and asking x1 to handle-
ok?. Agent x1 then generates a new nogood and sends a nogood to x3. x3 notices
that x2 is in the nogood but not in his neighbors and so adds it as his neighbor and
asks x2 to add him as a neighbor. In response to this x2 asks x3 to handle-ok?
with his new color. Agent x3 uses x2’s new color to generate a new nogood that it
sends to x2. The figure ends at this point but the algorithm would continue with x2

realizing that it must set itself to black and sending the appropriate handle-ok?
messages, and so on.

The abt algorithm has been shown to be complete.

Theorem 2.1 (abt is Complete). The abt algorithm always finds a solution if one
exists and terminates with the appropriate message if there is no solution (Yokoo
et al., 1998).

Proof. The proof works by induction. In order to prove it we must first show that
the agent with the highest priority never enters an infinite loop. Then show that
given that all the agents with lower priority that k never fall into an infinite loop
then k will not fall into an infinite loop.

Unfortunately, after running a few examples of this algorithm one quickly no-
tices some problems. The most important is the uneven division of labor. In abt
the lowest priority agent ends up doing many times more work than the highest
priority agents, which is reflected by the number of messages each agent receives.
The difference only gets worse as the number of agents increases. Another draw-
back is the fact that in practice abt can take very long as it also suffers from the
same problem as regular backtracking. That is, if the high priority agents make bad
decisions (choose colors that will not work) then it takes a long time to fix these
as all the other agents have to prove that those colors will not work by trying all
possible combinations of their colors. In the graph coloring problem we notice that
the time to solve a problem increases exponentially as the ratio of edges to nodes
increases. This means that as the problem becomes more constrained the time to
find a solution explodes.

ABTmmAnother possible improvement to abt can be found in line 1 of backtracking
which tells us to find new nogoods. As you can see, the line does not specify which
subset of nogoods to generate. One way to improve abt is by managing which
nogoods get generated such that only those that are likely to lead to a solution get
generated (Jiang and Vidal, 2005; Jiang and Vidal, 2006). This strategy has the
effect of greatly reducing the number of cycles needed to find a solution.

ABTkgcWe can also extend abt by allowing agents to solve the problem without the need
to add new links, thus limiting the agent to agent communication. This enhancement
has been implemented by the kernel abt algorithm (Bessière et al., 2005). This
algorithm could be used in applications where it is impossible to change the original
communication network.

2.1.4 Asynchronous Weak-Commitment Search

As we mentioned, abt suffers from the fact that the agents have a fixed priority so
that if the highest priority agent makes a bad decision then all the other agents must
perform an exhaustive search to prove him wrong. The Asynchronous Weak-
Commitment (awc) algorithm tries to avoid this problem by giving the agents

Asynchronous
Weak-Commitment

dynamic priorities. The agents all start out with the same priority but whenever an
agent is forced to backtrack and resolve a new nogood then it raises its priority to
be higher than anyone else’s. The agents inform each other about their priorities by
including them in the handle-ok? and handle-nogood remote procedure calls.

awc also uses the min-conflict heuristic (Minton et al., 1992) in order to re-
duce the risk of making a bad decision. The min-conflict heuristic tells the agents
to choose the value for their variable which minimizes the number of constraint
violations with other agents given the current values.

AWCgc

http://jmvidal.cse.sc.edu/netlogomas/ABTmm.html
http://jmvidal.cse.sc.edu/netlogomas/ABTkgc.html
http://jmvidal.cse.sc.edu/netlogomas/AWCgc.html

28 Chapter 2. Distributed Constraints

Figure 2.8: Asynchronous
weak-commitment search al-
gorithm. The rest of the pro-

cedures are the same as in
abt, from figure 2.6 except

that they now also record
the calling agent’s priority.

check-local-view

1 if xi is consistent with local -view
2 then return
3 if no value in Di is consistent with local -view
4 then backtrack()
5 else select d ∈ Di consistent with local -view and which minimizes constraint

violations with lower priority agents.
6 xi ← d
7 ∀k∈neighbors k.handle-ok?(i, xi, priority)

backtrack

1 generate a nogood V
2 if V is empty nogood
3 then broadcast that there is no solution
4 terminate this algorithm
5 if V is a new nogood
6 then ∀(k,xk)∈V k.handle-nogood(i, j, priority)
7 priority ← 1 + max{neighbors ’priorities}
8 select d ∈ Di consistent with local -view and which minimizes constraint

violations with lower priority agents.
9 xi ← d

10 ∀k∈neighbors k.handle-ok?(i, xi, priority)

The awc algorithm is the same as abt except that it re-defines both check-
local-view and backtrack. The re-defined functions from the awc algorithm
can be seen in figure 2.8. As you can see, it amounts to only a small modification to
abt. The agents now must keep track of all their neighbors’ priorities. Whenever
an agent detects a nogood it sets its priority to be higher than all its neighbors.
This technique results in having the most constrained agent pick its value first.

Note that the algorithm, as presented in figure 2.8, glosses over some important
implementation details. Line 5 of backtrack asks us to check if V is a new nogood.
This means that the nogoods need to be stored in a data structure with a fast search
function, perhaps a hash table or a database. Line 5 in check-local-view, as well
as line 8 in backtrack, ask us to solve a minimization problem which could also
take a long time for agents with high priority. Finally, line 1 of backtrack does
not specify which nogood we should generate and, as we mentioned in the previous
section, is thus amenable to improvements.

In practice, a problem that plagues both awc and abt is the fact that the
implementation of a good hyper-resolution function is not easy. Even if implemented
correctly, finding a new nogood could take a very long time. In fact, one expects
that the time required to generate new nogoods would increase linearly, perhaps
exponentially, as the number of known nogoods increases.

Just like its predecessor, awc has been shown to be complete. The only tricky
part to proving its completeness lies in those changing priorities. Luckily, we note
that these priorities cannot be forever changing as there are only a finite number
of impossible value assignments. Thus, at some point we will have tried all possible
value combinations and the priorities will stop increasing.

Theorem 2.2 (awc is complete). The awc algorithm always finds a solution if one
exists and terminates with the appropriate message if there is no solution (Yokoo
and Hirayama, 2000).

Proof. The priority values are changed if and only if a new nogood is found. Since
the number of possible nogoods is finite the priority values cannot be changed indefi-
nitely. When the priority values are stable awc becomes abt, which is complete.

It has been shown that awc outperforms abt in that it finds the solution much

2.1. Distributed Constraint Satisfaction 29

x1

 #

x2

 #

x3

1: priority = 0

1: priority = 0 1: priority = 0

1:
ok

?(
x 2
,#
, 0

) 1: ok?(x
3 ,

, 0)

2:local -view = (x2,#), (x3,)

3: nogood(x
2 =

#
∧
x

3 =

)

3: priority = 1

4: Added link

5: ok?(x2,#, 0)

5: local -view = (x2,#)
6: nogood(x2,#)

6: priority = 2

Figure 2.9: awc example. The
numbers indicate the time at
which the particular action
took place. Only the first six
steps are shown. Note how the
priorities of the agents change.

faster in randomly generated graphs (Yokoo and Hirayama, 2000). Neither abt nor
awc provide us with guidance as to which nogood should be generated. That is, at
any step there are many different nogoods that can be generated and these nogoods
get bigger as the number of neighbors increases.

2.1.5 Distributed Breakout

Another way to approach the problem of distributed constraint satisfaction, different
from the backtracking idea, is to use a hill-climbing method. In hill-climbing we
start by assigning all variables randomly chosen values, then we change the values
so as to minimize the constraint violations. We repeat the process until we cannot
improve on the current solution. In a distributed version of hill-climbing each agent
is a variable and all agents change their color in parallel, sending messages to their
neighbors which indicate their new color.

All hill-climbing algorithms suffer from the problem of local minima. That is,
it is possible for the system to reach a state were no one agent can find a better
value for its variable and yet that is not the best possible value assignment for
the system. That is, a local minimum can be recognized by the fact that no one

A local minimum is akin to a

Nash equilibrium while the

optimal solution is akin to the

utilitarian solution in game

theory.

agent can reduce the total number of constraint violations by changing its color
but that number could be reduced by having two or more agents change their color
simultaneously. As such, identifying the fact that the system is in a local minimum
requires all agents to broadcast the fact that they are in a local minimum and these
broadcasts must be further annotated to ensure that the agents’ local views are
coherent with each other—they were all in the same global state when they sent
out their broadcasts. Implementing all these techniques would lead to a complex
algorithm with large amounts of communications and would result in long run times.

The distributed breakout algorithm tries to bypass this problem by recog-
distributed breakout

nizing a quasi-local minimum instead of a the full local minimum (Yokoo and
quasi-local minimum

Hirayama, 1996; Hirayama and Yokoo, 2005; Yokoo and Hirayama, 2000). The quasi-
local minimum has the advantage that it can be recognized by an individual agent.

Definition 2.6 (Quasi-local minimum). An agent xi is in a quasi-local minimum
if it is violating some constraint and neither it nor any of its neighbors can make a
change that results in lower total cost for the system.

Unfortunately, the fact that an agent is in a quasi-local minimum does not
necessarily imply that it is in a local minimum since it is possible that some non-
neighboring agents could make changes that would lower the total cost. On the other
hand, if the system is in a local minimum then at least one agent will find itself
in a quasi-local minimum. Thus, to escape local minima the algorithm identifies
quasi-local minima and increases the cost of the constraint violations.

30 Chapter 2. Distributed Constraints

Figure 2.10: The dis-
tributed breakout algo-

rithm. Agents start by set-
ting themselves to some color

and then calling handle-
ok? on all their neighbors.

handle-ok?(j, xj)
1 received -ok [j]← true
2 agent-view ← agent-view +(j, xj)
3 if ∀k∈neighbors received -ok [k] = true
4 then send-improve()
5 ∀k∈neighbors received -ok [k]← false

send-improve()
1 new -value ← value that gives maximal improvement
2 my-improve ← possible maximal improvement
3 ∀k∈neighbors k.handle-improve(i,my-improve, cost)

handle-improve(j, improve)
1 received -improve[j]← improve
2 if ∀k∈neighbors received -improve[k] 6= none
3 then send-ok
4 agent-view ← ∅
5 ∀k∈neighbors received -improve[k]← none

send-ok()
1 if ∀k∈neighbors my-improve ≥ received -improve[k]
2 then xi ← new -value
3 if cost > 0 ∧ ∀k∈neighbors received -improve[k] ≤ 0 � quasi-local optimum
4 then increase weight of constraint violations
5 ∀k∈neighbors k.handle-ok?(i, xi)

As such, the breakout algorithm maintains a weight associated with each con-
straint. These weights are initially set to one. Whenever an agent finds itself in a
quasi-local-minimum it increases the weights of the constraints that are being vio-
lated. The weights in turn are used to calculate the cost of a constraint violation.
That is, rather than simply counting the number of violated constraints, distributed
breakout uses the weighted sum of the violated constraints. In this way, a constraint
that was violated increases in weight so it becomes more important to satisfy that
constraint in the next time step.

Distributed breakout implements two remote procedures.

• handle-ok?(i, xi) where i is the agent and xi is its current value,

• handle-improve(i, improve) where improve is the maximum i could gain by
changing to some other color.

The full algorithm can be seen in figure 2.10. In it we can see that the agents
spend their time either waiting to handle-ok? or handle-improve from all their
neighbors. Once an agent gets all the handle-ok? invocations it calculates its new
cost and possible improvement and sends a handle-improve to all its neighbors.
Once an agent gets all the handle-improve messages then the agent determines if
it is in a quasi-local-minimum. If so then it increases the weights of the constraint
violations and sends a handle-ok? to its neighbors.

DBgc Figure 2.11 shows an example application of the distributed breakout algorithm.
We start out with a random coloring for all the nodes as seen on the first picture
on the left. Once the agents receive all the handle-ok? from their neighbors they
check to see how much they could improve by changing and send the handle-
improve messages. In this case, it turns out that for all agents my-improve ≤ 0.
Therefore, the agents increase weights to that shown on the second picture. At this
point nodes 1, 2, 4 and 6 have a my-improve = 1 while 2, 5 are at −3. We break

http://jmvidal.cse.sc.edu/netlogomas/DBgc.html

2.2. Distributed Constraint Optimization 31

time = 1

3

2 5

4

1 6

1

1

1 1

1

1
11

1

1

1 1

1

1

time = 2

3

2 5

4

1 6

1

1

2 2

1

1
22

1

1

2 2

1

1

time = 3

3

2 5

4

1 6

1

1

2 2

1

1
22

1

1

2 2

1

1

time = 4

3

2 5

4

1 6

1

1

2 2

1

1
22

1

1

2 2

1

1 Figure 2.11: Example of dis-
tributed breakout. The only
colors allowed are white and
gray. The numbers represent
the weights that the agents
give to each of their con-
straints. We show four steps,
starting at the top left.

ties using the agent number where smaller number wins. As such, agents 1 and 3
are the ones that get to change their color. They do so in the third picture. They
then tell their neighbors their new color by calling handle-ok? on them. At this
point agent 2 has a my-improve = 4 (that is 1 + 1 + 2) which is higher than anyone
else’s so it gets to change its color which moves us to the last picture.

The performance of distributed breakout is, on average, superior to awc which
is in turn superior to abt. However, we should always remember that distributed
breakout is not complete.

Theorem 2.3 (Distributed Breakout is not Complete). Distributed breakout can
get stuck in local minimum. Therefore, there are cases where a solution exists and
it cannot find it.

Distributed breakout will also not be able to identify that a particular problem
lacks a solution. Specifically, the algorithm will either continue running or get stuck
in a local minimum when given a problem that lacks a solution. As such, breakout
cannot be used when there is any chance that the problem lacks a solution and you
want to determine if the problem has or does not have a solution.

Tests have also shown that the load distribution of distributed breakout is un-
even. That is, some agents end up handling several times more messages than other
agents. There is likely a correlation between the number of edges an agent has and
the number of messages it must process. Still, distributed breakout has been shown
to, in practice, find the local optima a very large percentage of the time, and vari-
ations of the basic algorithm perform even better. Specifically, Multi-DB++ has

Multi-DB++
been shown to, in practice, always find the solution for 3SAT problems (Hirayama
and Yokoo, 2005).

2.2 Distributed Constraint Optimization

The distributed constraint optimization problem is similar to the constraint
distributed constraint

optimization
satisfaction problem except that the constraints return a real number instead of a
boolean value and the goal is to minimize the value of these constraint violations.
The problem arises when multiple, perhaps all, solutions are valid but some are

32 Chapter 2. Distributed Constraints

Figure 2.12: A centralized
branch and bound algo-

rithm for constraint opti-
mization. It assumes there
are n variables, x1, . . . , xn,
and that P (g) returns the

total of any constraint vio-
lations given partial assign-
ment g and constraints P .

branch-and-bound-cop()
1 c∗ ← ∞ � Minimum cost found. Global variable.
2 g∗ ← ∅ � Best solution found. Global variable.
3 branch-and-bound-cop-helper(1, ∅)
4 return g∗

branch-and-bound-cop-helper(i, g)
1 if i = n
2 then if P (g) < c∗ � Cost of violations in g is less than current bound.
3 then g∗ ← g
4 c∗ ← P (g)
5 return
6 for v ∈ Di

7 do g′ ← g + {xi ← v}
8 if P (g′) < c∗

9 then branch-and-bound-cop-helper(i+ 1, g′)

preferred to others. For example, say you are trying to schedule all your classes
or weekly meetings and any schedule where no class overlaps another one is a
valid schedule. However, you might prefer schedules with the least number of early
morning classes.

We formally define a constraint optimization problem as follows:

Definition 2.7 (Constraint Optimization Problem (cop)). Given a set of variables
x1, x2, . . . xn with domains D1, D2, . . . Dn and a set of constraints P of the form
pk(xk1, xk2, . . . , xkj)→ <, find assignments for all the variables such that the sum
of the constraint values is minimized.

cop is an NP-Complete problem. That means that, at worse, all algorithms
will take an exponential time (in the number of variables) to finish. Even parallel
algorithms will, at worst, need exponential time. However, those are worst case
scenarios. In practice we find some algorithms that do very well on most problems.

The most common approach to solving cops is to use a branch and bound
branch and bound

algorithm such as the one shown in figure 2.12. Branch and bound algorithms per-
form a depth first search of the variable assignments but also maintain a bound, c∗,
which is the cost of the best solution found thus far. If a partial variable assignment
already has a cost that is equal or higher than c∗ then we know that there is no
need to find values for the rest of the variables as the cost will only increase. The
algorithm is complete so it will find the best possible solution to the problem, but
doing so might require a lot of time. Since it is based on a depth first search its
memory requirements are linear on the number of variables.

The distributed constraint optimization problem distributes the variables to the
agents.

Definition 2.8 (Distributed Constraint Optimization Problem (dcop)). Give each
agent one of the variables in a cop. Agents are responsible for finding a value for
their variable and can find out the values of their neighbors’ via communication

We now look at some algorithms for solving the dcop problem.

2.2.1 Adopt

The Adopt algorithm (Modi et al., 2005) is a recent addition to the family
Adopt of dcop algorithms. It is roughly a depth-first search on the set of possible value

assignments, but with a lot of improvements on the basic search strategy. Namely,
each agent in the depth-first tree keeps a lower and upper bound on the cost for the
sub-problem below him (given assignments from above) and on the sub-problems

2.2. Distributed Constraint Optimization 33

reset-variables(d, c)
1 lower -bound [d, c]← 0
2 t[d, c]← 0
3 upper -bound [d, c]←∞
4 context [d, c]← {}

initialize()
1 threshold ← 0
2 received -terminate ← false
3 current-context ← {}
4 ∀d∈Di,c∈children reset-variables(d, c)
5 xi ← d ∈ Di which minimizes: my cost plus

∑
c∈children lower -bound [d, c]

6 backtrack()

handle-threshold(t, context)
1 if context is compatible with current-context
2 then threshold ← t
3 maintain-threshold-invariant()
4 backtrack()

handle-terminate(context)
1 received -terminate ← true
2 current-context ← context
3 backtrack()

handle-value(j, xj)
1 if ¬ received -terminate
2 then current-context [j]← xj
3 for d ∈ Di, c ∈ children such that context [d, c] is

incompatible with current-context
4 do reset-variables(d, c)
5 maintain-threshold-invariant()
6 backtrack()

handle-cost(k, context , lb, ub)
1 d← context [i]
2 delete context [i]
3 if ¬ received -terminate
4 then for (j, xj) ∈ context and j is not my neighbor
5 do current-context [j]← xj
6 for d′ ∈ Di, c ∈ children such that context [d, c] is

incompatible with current-context
7 do reset-variables(d′, c)
8 if context compatible with current-context
9 then lower -bound [d, k]← lb

10 upper -bound [d, k]← ub
11 context [d, k]← context
12 maintain-child-threshold-invariant()
13 maintain-threshold-invariant()
14 backtrack()

Figure 2.13: The Adopt algo-
rithm. Before the algorithm
is even called the agents must
form a depth first search tree.
Each agent has a parent vari-
able which points to its par-
ent. The root’s parent is set as
null.

34 Chapter 2. Distributed Constraints

Figure 2.14: The Adopt
algorithm, continued.

backtrack()
1 if threshold = mind∈Di cost(d) +

∑
c∈children upper -bound [d, c]

2 then xi ← arg mind∈Di
cost(d) +

∑
c∈children upper -bound [d, c]

3 elseif threshold < cost(xi) +
∑
c∈children lower -bound [xi, c]

4 then xi ← arg mind∈Di
cost(d) +

∑
c∈children lower -bound [d, c]

5 ∀k∈neighbors ∧k has lower priorityk.handle-value(i, xi)
6 maintain-allocation-invariant()
7 if threshold = mind∈Di

cost(d) +
∑
c∈children upper -bound [d, c] and

(received -terminate or I am root)
8 then current-context [i]← xi
9 ∀c∈childrenc.handle-terminate(current-context)

10 exit
11 parent .handle-cost(current-context ,

mind∈Di
cost(d) +

∑
c∈children lower -bound [d, c],

mind∈Di
cost(d) +

∑
c∈children upper -bound [d, c])

maintain-threshold-invariant()
1 if threshold < mind∈Di

cost(d) +
∑
c∈children lower -bound [d, c]

2 then threshold ← mind∈Di
cost(d) +

∑
c∈children lower -bound [d, c]

3 if threshold > mind∈Di
cost(d) +

∑
c∈children upper -bound [d, c]

4 then threshold ← mind∈Di cost(d) +
∑
c∈children upper -bound [d, c]

maintain-allocation-invariant()
1 while threshold > cost(xi) +

∑
c∈children t[xi, c]

2 do chosen ← c′ ∈ children such that upper -bound [xi, c′] > t[xi, c′]
3 t[xi, chosen]← t[xi, chosen] + 1
4 while threshold < cost(xi) +

∑
c∈children t[xi, c]

5 do chosen ← c′ ∈ children such that lower -bound [xi, c′] < t[xi, c′]
6 t[xi, chosen]← t[xi, chosen]− 1
7 ∀c∈childrenc.handle-threshold(t[xi, chosen], current-context)

maintain-child-threshold-invariant()
1 for d ∈ Di, c ∈ children
2 do if lower -bound [d, c] > t[d, c]
3 then t[d, c]← lower -bound [d, c]
4 for d ∈ Di, c ∈ children
5 do if upper -bound [d, c] < t[d, c]
6 then t[d, c]← upper -bound [d, c]

for each one of his children. It then tells the children to look for a solution but
ignore any partial solution whose cost is above the lower bound because it already
knows that it can get that lower cost.

The general idea in Adopt is that each node in the tree calculates upper and
lower bounds on the cost for all the constraints that involve all the nodes in the
subtree rooted at that node, given an assignment for the nodes on the path to
the root. Each node changes to the value (color) whose lower bound is smallest at
each time and then asks its children to calculate new bounds given the new value.
Upon receiving this message each node again changes its value to the one with the
lowest lower bound and the process is repeated. Figures 2.13 and 2.14 show the full
algorithm.

The basic workings of Adopt are best shown via an example. Table 2.2 shows
the cost function we will be using in our example. Figure 2.15 shows a trace of an
application of Adopt to a simple problem. As you can see, all the constraints are
binary, as Adopt can only handle binary constraints. All the agents keep track of the

2.2. Distributed Constraint Optimization 35

1.

x1 = 0

x2 = 1 x3 = 0

x4 = 1

f f

f

f

2. x1 = 0

x2 = 0

x3 = 0 x4 = 0

f

f

f f

3. x1 = 0

x2 = 0

x3 = 0 x4 = 0

value
x1 = 0

value
x1 = 0

value
x2 = 0

4. x1 = 0

x2 = 0

x3 = 0 x4 = 0

cost
1,∞
x1 = 0

cost
2,2

x1 = 0
x2 = 0

cost
1,1

x2 = 0

5. x1 = 1

x2 = 0

x3 = 0 x4 = 0

value
x1 = 1

value
x1 = 1

6. x1 = 1

x2 = 1

x3 = 1 x4 = 0

cost
0,∞
x1 = 1

cost
2,2

x1 = 1
x2 = 0

value
x2 = 1

7. x1 = 1

x2 = 1

x3 = 1 x4 = 1

cost
0,3

x1 = 1
cost
0,0

x1 = 1
x2 = 1

cost
0,0

x2 = 1

8. x1 = 1

x2 = 1

x3 = 1 x4 = 1

cost
0,0

x1 = 1

Figure 2.15: Adopt example.
Start at the top left and read
left to right. The domain for
all nodes is the set {0, 1}.

36 Chapter 2. Distributed Constraints

Table 2.2: Cost function for
Adopt example in figure 2.15.

di dj p(di, dj)

0 0 1
0 1 2
1 0 2
1 1 0

upper and lower bounds sent by their children along with the associated context.
They use these bounds to calculate bounds on their own costs. Initially, all lower
bounds are set to 0 and all upper bounds to infinity.

The first diagram is the constraints graph itself. The first thing we must do before
even starting Adopt is to form a depth-first search graph. That is, a graph such that
all constraints emanating from a node go to either one of its descendants—the tree
below it—or one of its ancestors—agents on the path from the node to the root.
There exists several algorithms for finding such a tree and generally multiple trees
can be formed from one constraints graph. The second diagram shows a possible
depth-first search tree for our example.

The third diagram shows the first step in the algorithm. All the nodes invoke
handle-value on all the descendants with whom they share a constraint. That is
why x1 sends a message to x3 but not x4. These handle-value are similar to the
handle-ok? functions we saw before. They simply inform the other agents of the
new value, in this case the original values.

ADOPTgc The agents use these values to calculate both upper and lower bounds on their
cost and report these back up to their parents, as shown in the fourth diagram. For
example, x3 calculated that, given that x1 = 0 and x2 = 0 if it set itself to 0 the
cost would be 2 and if set itself to 1 the cost would be 4, remember that we are
using the cost function from Table 2.2, thus it stays at 0 and sends a handle-cost
to its parent saying that its lower and upper bounds, given x1 = 0 and x2 = 0, are
2. This message means that the cost of the constraints for the subtree rooted at x3

(since x3 is a leaf this then means just all the constraints in which x3 is involved)
given x1 = 0 and x2 = 0, are no lower or no higher than 2. x3 can set both its upper
and lower bounds because it has values for all its constraints. On the other hand,
x2 sends an upper bound of ∞ because it does not know the upper bounds of its
children, so it does not know how much those costs could add up to.

In the fifth diagram the agents calculate new best values and so x1 sends
handle-value messages. In the sixth diagram x2 receives the cost messages from
before and sets himself to 1 because the value 1 has a lower lower bound (because all
lower bounds are initially set to 0). x2 then sends the appropriate handle-value
messages.

In the seventh diagram both x3 and x4 calculate that both their upper and lower
bounds are 0 given that x1 = 0 and x2 = 0 and send this message up to x2. In the
eighth diagram x2 uses this message to calculate its new bounds, also 0 and 0, and
sends these up to the root. Upon receiving this message the root knows it can stop
the algorithm because it has identical upper and lower bounds. We note that the
Adopt algorithm is actually a bit more complicated than this example shows as we
ignored any handle-threshold invocations.

Test results on Adopt show that there is a very wide discrepancy in the number
of messages each agent must handle and, therefore, the individual workload. Namely,
agents at the leafs of the tree end up doing all of the work while the root sits idle.
This gets worse as the tree becomes thinner (like a line). Since the tree must be a
depth-first search graph, this means that problems with a lot of constraints will be
doubly bad because they will need a thinner tree and the extra constraints means
more work for the agents.

Also, it must be noted that if each agent handles each message as it comes (and
calls the backtrack routine) then Adopt will never finish. For Adopt to work
the agents need to accumulate a number of handle-value and handle-cost

http://jmvidal.cse.sc.edu/netlogomas/ADOPTgc.html

2.2. Distributed Constraint Optimization 37

1

23

4 5

2

5
Figure 2.16: Trace of apo al-
gorithm showing the growing
size of node 1’s good-list . Ini-
tially only 1 is in the good-list ,
then 2 joins, finally 5 joins.

invocations before running their backtrack procedure.

2.2.2 OptAPO

A different approach to solving the distributed constraint optimization problem
was taken by the Optimizing Asynchronous Partial Overlay (optapo) algorithm

optapo
(Mailler and Lesser, 2004a), which is the cousin of the apo algorithm (Mailler and

apo
Lesser, 2004b) for distributed constraint satisfaction.

Both of these algorithms use the same basic idea. The agents start out doing
individual hill-climbing, that is, each one changes its color so as to minimize con-
straints violations with its neighbors. When an agent realizes that it cannot find
a value with no violations it tries to find a coloring for a (growing) set of agents
which includes itself. More specifically, each agent maintains a variable called its
good -list which initially contains only the agent. As the agent finds conflicts with
other agents that it cannot resolve it adds these agents to its good -list . Then, the
conflict is resolved by electing one of the agents in the conflict to be the media-
tor of the conflict. The mediator agent then finds a coloring for all the agents in
its good -list and which minimizes violations with agents outside the good -list using
any centralized algorithm, such as the branch and bound algorithm from figure 2.12.
The agent then informs the other agents of their new color. The agents change to
their new color as instructed by the mediator.

Figure 2.16 gives an idea of how apo works. Initially, node 1 has only itself in
its good -list . If it finds that it cannot resolve a conflict with agent 2 then they enter
into a negotiation phase to elect a mediator. In this case 1 becomes the mediator
and then finds colors for both 1 and 2. Later on another conflict between 1 and 3
might arise which would lead to 1 becoming mediator for 1,2,3. Notice that if we
give optapo a graph coloring problem that has no solution, that is, there is always
at least one conflict then it will eventually end up performing a complete depth first
search of the complete problem in one node. This will be extremely time consuming.

In practice, apo and optapo can be very fast, but their theoretical worst-case
bound is still exponential.

Theorem 2.4 (apo worst case is centralized search). In the worst case apo
(optapo) will make one agent do a completely centralized search of the complete
problem space.

optapo requires fewer number of synchronous cycles (that is, steps) than Adopt
but performs a lot more computations as measured by number of constraints checks
(Davin and Modi, 2005). That is, optapo centralizes the problem much more than
Adopt. When an agent becomes a mediator it centrally solves a large part of the

38 Chapter 2. Distributed Constraints

problem and tells the other agents what to do. As such, that one agent ends up
doing a lot of work while everyone else does nothing (generally there can be more
than one mediator, each mediating over non-overlapping sets of agents, but this
is rare). In this way optapo can finish in a much smaller number of steps simply
because some of those steps take a long time.

In general we find that Adopt is better when agent to agent communications
are fast and optapois better when communications are slow in comparison to the
agent’s processing speed. Both of them have exponential worst-case running times
but perform reasonable well for small problems.

Exercises

2.1 In both abt and awc the load distribution among the agents is very uneven,
as demonstrated in our NetLogo implementations. Can you come up with an
equation that predicts how many messages, proportionally, each agent receives
given the initial problem structure and priorities?

2.2 The Sodoku puzzle is an instance of a constraint satisfaction problem. We can
view it as a distributed constraint satisfaction problem by simply assuming
that each empty square on the board corresponds to an agent. Implement

DBsodoku any one of the distributed constraint satisfaction algorithms in this chapter
to solve Sodoku puzzles.

2.3 Provide an example which proves Theorem 2.3.

2.4 Provide an example which proves Theorem 2.4.

2.5 All these algorithms assume a static constraint graph. Unfortunately, many
real world applications are dynamic and can best be represented by a series of
constraint satisfaction problems each of which is a little bit different from the
previous one. In these applications it seems wasteful to re-start the algorithm
from the beginning when the new problem is only slightly different from the
old one.

Implement one of the constraint satisfactions algorithms for graph coloring
and run tests to determine how it behaves as the graph changes. For example,

1. Start with a randomly generated graph and an initial coloring.

2. Run the algorithm starting with he current coloring.

3. Change the graph by adding or deleting a random node.

4. Goto step 2.

Does the algorithm take the same time in the first step as in all the other
steps? What type of changes to the graph make the most difference in the run
time?

http://jmvidal.cse.sc.edu/netlogomas/DBsodoku.html

Chapter 3

Standard and Extended Form Games

John Von Neumann.

–. Pioneer of the

digital computer, game theory

and cellular automata.

In all multiagent systems we have a set of autonomous agents each performing its
own actions using whatever information is has available. Since the other agents are
also taking actions, each agent must also take these into account when deciding
what to do. Thus, what one does depends on what the other one does and vice-
versa. The agent must decide what to do when their choice of action depends on the
others’ choices. These types of problems are very common in different fields, from
Economics to Biology, and their solution is sometimes of immense importance. As
such, a set of mathematical tools has been developed over the years to model and
solve these problems. It is known as game theory and is the subject of this and

game theory
several other chapters in this book.

Game theory was first formally introduced in the book “The Theory of Games
and Economic Behavior” (Neumann and Morgenstern, 1944). The book introduced
a mathematical way of analyzing certain types of decisions where two or more
parties take actions that impact all. In this chapter we present the two most basic
forms of games: normal and extended form games. These games are known as non-
cooperative games because the agents’ preferred sets of actions can be in conflict

non-cooperative games
with each other. That is, what is good for one agent might be bad for the others.
Of course, the fact that they can be in conflict does not mean that they have to be,
thus, non-cooperative games can lead to cooperation.

3.1 Games in Normal Form

In the simplest type of game we have two agents each of which must take one of two
possible actions. The agents take their actions at the same time. They will then each
receive a utility value, or payoff, based on their joint actions. Games such as this
one can be represented using a payoff matrix which shows the utility the agents

payoff matrix
will receive given their actions. Figure 3.1 shows a sample game matrix in normal
form, also known as strategic form, a phrase introduced by Shapley in 1965. In

normal form
strategic formthis game if Bob takes action a and Alice takes action c then Bob will receive a

utility of 1 and Alice a utility of 2. We can extend the payoff matrix to any number
of players and actions. In these games we always assume that the players take their
actions simultaneously.

Normal form games also assume that the players have common knowledge of
common knowledge

the utilities that all players can receive. That is, everybody knows that everybody
knows that everybody knows, and so on, the values in the payoff matrix. This (Fagin et al., 1995) describes a

logic for representing agents’

knowledge about others’

knowledge.

situation is different from having the agents know the values in the matrix but not
know that the others know those values. For example, if you know that I am giving
you a surprise party then you might go along and act surprised when we all jump

Alice

c d

Bob
a 1,2 4,3

b 3,2 2,4
Figure 3.1: Sample game ma-
trix in normal form.

39

40 Chapter 3. Standard and Extended Form Games

and yell “surprise!”. However, if you know that I know that you know that I will be
giving you a surprise party then the deception will no longer work.

It is also interesting to note that in message-passing multiagent systems where
messages can be lost it is impossible for agents to ever achieve common knowledge
about anything (Fagin et al., 1995). The problem is historically described as the
Byzantine generals problem where two generals from the same army are poised

Byzantine generals
problem

on opposite sides of a valley which is occupied by the enemy. The generals must both
attack at the same time in order to defeat the enemy. However, their only method
of communication is by sending a messenger who could be captured by the enemy.
We can see that, if one general sends a message to the other saying “We attack at
dawn” it has no way of confirming whether the other general received this message.
Similarly, if a general does receive the message and sends another messenger back
acknowledging receipt then it has no way of confirming whether the other general
received the acknowledgment. Thus, it is impossible to agree on a time. In practice,
however, multiagent systems that need common knowledge either give their agents
this common knowledge from the beginning or assume that communications are
reliable enough that it is safe to assume that all messages are delivered.

Getting back to the normal form game, we define a strategy s to be the set
strategy

of actions all players take. In this case a strategy of s = (a, c) would give Bob a
utility of 1 and Alice a utility of 2, in other words, uBob(s) = 1 and uAlice(s) = 2.
We also refer to Bob’s strategy in s as sBob, which is a in this case. This strategy
is also an example of a pure strategy: one where the agents take a specific action.

pure strategy
In contrast, a mixed strategy is one where the agents take different actions, each

mixed strategy
with some fixed probabilities. For example, a mixed strategy for Bob is to take
action a with probability of .3 and action b with a probability of .7. Note that in a
mixed strategy the probabilities for all actions of each agent have to add up to 1.
Typically, game theory further assumes that players are rational, which we use as

rational
a synonym for selfish. That is, a rational player always acts so as to maximize its
utility.

A special type of game are those in which the values in every box of the matrix
add up to zero. These games are known as zero-sum games and represent scenarios

zero-sum
where one agent’s gain must come at a loss to he other agents. For example, in a
zero-sum game with two players if for a particular strategy s one player gets a utility
of 5 then the other player must receive a utility of −5. In these games cooperation
is unlikely. Note that every competitive sport is a zero-sum game as the fact that
one team wins means the other must lose. Luckily, real-world problems are rarely
zero-sum, even if our tendency is often to perceive them as such.

3.1.1 Solution Concepts

Given a game matrix we can’t help but ask: what strategy should they use? Which
is best the best strategy in any given game? The problem, of course, is that there
is no simple way to define what’s best since what is best for one agent might not
be good for another. As such, different solution concepts have been proposed.

The earliest solution concepts were proposed by Von Neumann. He realized that
in any given game an agent could always take the action which maximized the worst
possible utility it could get. This is known as the maxmin strategy, or minmax, if

maxmin strategy
we are talking about losses instead of gains. Specifically, in a game with two agents,
i and j, agent i’s maxmin strategy is given by

s∗i = max
si

min
sj

ui(si, sj). (3.1)

That is, i assumes that no matter what it does j will take the action that is worst
for i. Thus, i takes its best possible action given this assumption. Unfortunately, the
strategy where both players play their maxmin strategy might not be stable in the
general case. In some payoff matrices it can happen that if i knows that j will play
its maxmin strategy then i will prefer a strategy different from its maxmin strategy.
For example, in figure 3.1 the maxmin strategy is (b, d) but if Alice plays d then

3.1. Games in Normal Form 41

Bob should play a. Thus, that strategy is not stable. This problem has prevented
the maxmin strategy from becoming a popular solution concept.

The existence of a solution concept is also important to us since, if a solution
concept does not exist for the game we are interested in then it is not of any use to
us. For the maxmin strategy we have the minimax theorem which states that a

minimax theorem
strategy that minimizes the maximum loss, a minmax strategy, can always be found
for all two-person zero-sum games (Neumann, 1928). Thus, we know it will work at
least for this subset of games.

Another approach is to look for strategies that are clearly better. We say that s
is the dominant strategy for agent i if the agent is better off doing s regardless of

dominant
which strategies the others use. Formally, we say that a pure strategy si is dominant
for agent i if

∀s−i∀ri 6=siui(s−i, si) ≥ ui(s−i, ri), (3.2)

where s−i represents the strategies of all agents except i. This idea can be expanded
into the iterated dominance solution in which dominated strategies are eliminated

iterated dominance
in succession. First we eliminate strategies from one agent, then from another, and
so on in a round-robin manner (and repeating agents) until we check all agents in
successions and none has a dominated action. Unfortunately, the iterated dominance
algorithm almost always ends before a solution is found. That is, in most games
none of the players has a dominant strategy.

We can also take a step back and look at the problem from a system designer’s
perspective. With our new enlightened outlook we might think that the right solu-
tion is to maximize overall welfare for all players. The social welfare strategy is

social welfare
the one that maximizes the sum of everyone’s payoffs. That is

s∗ = arg max
s

∑
i

ui(s). (3.3)

However, once again we have the problem that a social welfare strategy might
not be stable. Each selfish agent cares only about his own utility and will thus play
a different strategy if it can get a higher utility, even if it means everyone else is
much worse. Also, the social welfare strategy might not seem fair as it could be
one where one agent gets an extremely high utility and everyone else gets almost
nothing.

We can solve the unfairness problem by defining a solution concept that does
not take into account the agents’ absolute utility values. A strategy s is said to

Vilfredo Pareto. –.

be Pareto optimal if there is no other strategy s′ such that at least one agent is

Pareto optimal

better off in s′ and no agent is worse off in s′ than in s. There can be more than
one Pareto optimal solutions for a given problem. The set of all Pareto strategies
for a given problem is formally defined to be the set

{s | ¬∃s′ 6=s(∃iui(s′) > ui(s) ∧ ¬∃j∈−iuj(s) > uj(s′))} (3.4)

where −i represents the set of all agents except i. Pareto solutions are highly desir-
able from a social welfare perspective as they ensure that no one agent can complain
that it could get more utility without hurting someone else in the process. In Eco-
nomics the Pareto solution of often referred to as Pareto efficient or, simply, the
efficient solution. Unfortunately, Pareto solutions might also be unstable in that

efficient
one player might have an incentive to play a different action because he gets higher
utility, which means others get lower utility. In a dynamic multiagent system sta-
bility can be very important as designers often want the system to converge.

The problem of lack of stability was solved by John F. Nash. We say that a
strategy s is a Nash equilibrium if for all agents i, si is i’s best strategy given

Nash equilibriumthat all the other players will play the strategies in s. That is, if everyone else is
playing the Nash equilibrium then the best thing for everyone to do is to play the
Nash equilibrium. As with the Pareto solution, a game can have more than one
Nash equilibrium. Formally, the set of all Nash equilibrium strategies for a given
game is given by

{s | ∀i∀ai 6=si
ui(s−i, si) ≥ ui(s−i, ai)}. (3.5)

42 Chapter 3. Standard and Extended Form Games

Figure 3.2: Payoff ma-
trix for original pris-

oner’s dilemma problem.

A

Stays Silent Betrays

B
Stays Silent Both serve six

months.
B serves 10 years;
A goes free.

Betrays A serves 10 years;
B goes free.

Both serve two
years.

Nash showed that all game matrices have at least one equilibrium strategy, but
this strategy might be mixed. The only problem with the Nash equilibrium is the
fact that in many games there are many such equilibria. Also, some of those Nash
equilibria might be better for some players than other. Thus, the players might end
up arguing about which specific one to adopt. Still, once the agents have agreed
on one it is a very stable solution. Note that there is no general relation between
the Nash equilibrium and the Pareto solution. That is, a strategy can be a Nash
equilibrium but not be a Pareto solution. Similarly, a strategy can be Pareto optimal
but not be a Nash equilibrium. On the other hand, the social welfare strategy must
be a Pareto optimal.

John F. Nash. –. Winner

of 1994 Nobel prize on

Economics.

All these solution concepts make it clear that it is not a simple matter to define
what is the best answer. With multiple players, what is best depends on how much
we are willing to respect the agents’ selfishness, how we trade-off the various agents
utilities, and how fair we wish to be.

The most common problem we face when designing multiagent systems is the
existence of multiple equilibria. That is, we can generally design a system so that
selfish agents will converge to an equilibrium solution if there is one. But, if there
are more than one solution then we need to add extra coordination mechanisms to
ensure that the agents converge to the same strategy.

3.1.2 Famous Games

The most famous game of all is the Prisoner’s Dilemma. Its story typically goes
Prisoner’s Dilemma something like the following.

Two suspects A, B are arrested by the police. The police have insuf-
ficient evidence for a conviction, and having separated both prisoners,
visit each of them and offer the same deal: if one testifies for the prosecu-
tion against the other and the other remains silent, the silent accomplice
receives the full 10-year sentence and the betrayer goes free. If both stay
silent, the police can only give both prisoners 6 months for a minor
charge. If both betray each other, they receive a 2-year sentence each.

From this story we can generate a payoff matrix as shown in figure 3.2. We can
replace the prison sentences with utility values and arrive at the standard prisoner’s
dilemma payoff matrix shown in figure 3.3, note that longer prison terms translate
into lower utility. Thus, a 10 year sentence gets a utility of 0, a 2 year sentence
has utility of 1, 6 months is 3, and no time served has utility of 5. The actions are
labeled cooperate and defect because the suspects can either cooperate with each
other and maintain their silence or defect from their coalition and tell on the other
one.

Analysis of this matrix reveals that the social welfare solution is (C,C), the set
of Pareto optimal strategies is {(C,C) (D,C) (C,D)}, the dominant strategy for both
players is Defection, and the Nash equilibrium strategy is (D,D).

The Prisoner’s dilemma is interesting because the best choice is not the ratio-
nal choice. That is, even thought the (C,C) solution Pareto dominates the (D,D)

3.1. Games in Normal Form 43

A

Cooperate Defect

B
Cooperate 3,3 0,5

Defect 5,0 1,1
Figure 3.3: Prisoner’s dilemma
with standard payoff values.

Alice

Ice Hockey Football

Bob
Ice Hockey 4,7 0,0

Football 3,3 7,4
Figure 3.4: Battle of the sexes
game.

solution, a rational player will only play D as that strategy is dominant. The game
is widely studied because it applies to many real-world situations like nuclear dis-
armament and getting kids to clean up their room. There are some that object to
the fact that defection is the equilibrium and claim that real people do not act like
that.

The battle of the sexes is another popular game. It is shown in figure 3.4. In
battle of the sexes

this game Alice and Bob like each other and would like to spend time together but
must decide, without communicating with each other, where to go. Alice likes ice
hockey while Bob likes football. As such, they have a coordination problem where
each prefers to go to a different place but they would like to be together. This type
of problem arises frequently in multiagent systems where we often have agents that
want to cooperate with each other to achieve some larger goal but have conflicting
priorities about how to achieve that goal. For example, the agents in a company
want to get a new contract so that they can all get paid but each one wants to do as
little work as possible while getting as much money as possible. Another example
is agents that want to deliver a package but have different preferences on where the
hand-off from one agent to the other should occur.

After some analysis of this game we can determine that the social welfare so-
lutions are (I,I) (F,F), the Pareto optimal solutions are also (I,I) (F,F), there is
no dominant strategy, and the Nash equilibrium solutions are (I,I) (F,F). As you
can see, the problem here is that there are two strategies both of which are equally
attractive. This is the type of problem that we could fix easily if we just had a little
communication.

The game of chicken, shown in figure 3.5, is also common. In this story, two
game of chicken

maladjusted teenagers drive their cars towards each other at high speed. The one
who swerves first is a chicken and thus loses the game. But, if neither of them
swerves then they both die in a horrible crash. After some analysis we can see that
this game is very similar to the battle of the sexes. Its social welfare, Pareto optimal,
and Nash strategies are all the same, namely (C,S) (S,C), and there is no dominant
strategy. Once again there is a coordination problem: who will be the chicken?

One way out of the problem of multiple Nash equilibria is for one of the players
to eliminate one of his choices, say by soldering the steering wheel of the car so that
it does not turn. This would make it so that the other player’s rational choice is to
swerve. It might seem counter intuitive but in cases like this an agent can increase

Alice

Continue Swerve

Bob
Continue -1,-1 5,1

Swerve 1,5 1,1
Figure 3.5: The game of
chicken.

44 Chapter 3. Standard and Extended Form Games

Figure 3.6: The
pig and the piglet.

Pig

Nothing Press Lever

Piglet
Nothing 0,0 5,1

Press Lever -1,6 1,5

its payoff by limiting its set of possible actions.

The final game is taken from the world of zoology. Imagine there is a big pen
with a lever which, when pressed, delivers a small amount of food at the other end
of the pen. The pen is occupied by one big, but slow, pig and one small and fast
piglet. We then try to determine which one of them will press the lever and which
one will eat. The situation can be summarized by the matrix in figure 3.6. Namely,
if the big pig presses the lever then the piglet can stay standing by where the food
comes out and eat some of it before the pig comes and shoves him out. If the piglet
presses the lever then it will not get any food because the big pig will be standing
by the food dispenser and will not let the piglet get close to the food. If both of
them press it then the piglet will be able to eat a little bit since it can run faster
than the pig.

An analysis of this game shows that the social welfare solutions are (N,P) (P,P),
the Pareto optimal solutions are (N,P) (P,P) (P,N), the piglet has a dominant
strategy of N, and the Nash equilibrium is (N,P). Since the piglet has a dominant
strategy, it is clear that it will chose that, as such the big pig will have to press the
lever. The end result has the piglet siting next to where the food comes out and the
big pig running back and forth between the lever and the food.

Animal behaviorists have actually conducted experiments similar to this one
and indeed found that the big pig usually ends up pushing the lever. Of course, the
pigs do not actually think about their options. They simply try the different actions
until they find the one that works best. This tells us that agents can arrive at an
equilibrium solution without having much, if any, intelligence and use adaptation
instead. We will learn about learning and how we can use it to solve coordination
problems in a later chapter.

3.1.3 Repeated Games

We saw how in the prisoner’s dilemma the dominant strategy was to defect but both
players could have received a higher utility by cooperating. One way to try to get
out of this conundrum, and to better simulate real-world interactions, is to let two
players play the same game some number of times. This new game is known as the
iterated prisoner’s dilemma and, in general, we refer to these type of games as

iterated prisoner’s
dilemma

repeated games. Repeated games with a finite horizon are a special case of extended
form games, which we will cover in the next section. They have, however, sometimes
been studied independently.

One way to analyze repeated games that last for a finite number of periods is
to backtrack from the end. Let’s say you are playing an iterated prisoner’s dilemma
which will last for 50 rounds. You know that at the last round you will defect because
that is the dominant strategy and there is no need to be nice to the other player
as that is the last game. Of course, since you realized this then you also know that
the other player realized the same thing and so he will also defect at the last round.
As such, you know that you have nothing to gain by cooperating at round 49 so
you will defect at 49, and so will he. This backward induction can be repeated any
number of times leading us to the conclusion that for any finite number of games
the rational strategy is to always defect. However, people don’t act like this.

We can also formally prove a cooperative equilibrium for the iterated prisoner’s
dilemma if instead of a fixed known number of interactions there is always a small
probability that every interaction will be the last interaction. That is, the players

3.2. Games in Extended Form 45

never know if this will be their last interaction or not. In this scenario we can show
that the dominant strategy for the iterated prisoner’s dilemma is to cooperate, with
a certain probability.

More generally, however, the folk theorem tells us that in a repeated game
folk theorem

any strategy that is not Pareto-dominated by another and where every agent gets a
utility that is higher than his maxmin utility (3.1) is a feasible equilibrium strategy.
In these cases, each player knows that he can get his maxmin utility by playing
the appropriate action, regardless of what the others do. Thus, no player will be
satisfied with less than his maxmin utility. On the other hand, if the agents agree to
a strategy that gives everyone at least their maxmin and is not Pareto-dominated
then any agent that diverges from it could be penalized by the other agents so that
any gains he incurred from the deviation would be erased. In this way the agents
can police any chosen strategy and thus ensure that it is a stable strategy.

Such analysis still leaves open the question of which, in practice, is the optimal
strategy for the iterated prisoner’s dilemma. In the early 1980’s Robert Axelrod
performed some experiments on the iterated prisoner’s dilemma (Axelrod, 1984).
He sent out an email asking people to submit fortran programs that played the
prisoner’s dilemma against each other for 200 rounds. The winner was the one
that accumulated the most points. Many entries were submitted. They included the
following strategies.

• ALL-D : always play defect.

• RANDOM : pick action randomly.

• TIT-FOR-TAT : cooperate in the first round, then do whatever the other
player did last time.

• TESTER: defect on the first round. If other player defects then play tit-for-tat.
If he cooperated then cooperate for two rounds then defect.

• JOSS : play tit-for-tat but 10% of the time defect instead of cooperating.

The tit-for-tat strategy won the tournament. It still made less than ALL-D
tit-for-tat

when playing against it but, overall, it won more than any other strategy. It was
successful because it had the opportunity to play against other programs that were
inclined to cooperate. It cooperated with those that could cooperate and defected
against the rest. This result, while intriguing, is not theoretically robust. For ex-
ample a tit-for-tat strategy would lose against a strategy that plays tit-for-tat but
defects on the last round. Still, the tit-for-tat strategy has been widely used and is
considered to be a simple yet robust strategy.

Another method for analyzing repeated games is by assuming that the players
use some learning algorithm and then trying to determine which strategy their
learning will converge to. This research area is known as learning in games, which
we present in section 5.3.

3.2 Games in Extended Form

In extended form games the players take sequential actions. These games are
extended form

represented using a tree where the branches at each level correspond to a different
player’s actions and the payoffs to all agents are given at the leafs. Extended form
games can also represent simultaneous actions by using dotted ellipses to group
together nodes which are equivalent to the rest of the agents because, for example,
they could not see the actions taken by the agent.

Figure 3.7 shows the extended form version of the payoff matrix from figure 3.1.
In it, the first number inside the parentheses is the utility that Bob receives and the
second number is Alice’s utility. The dotted line groups together two states which
are invisible to Bob: it shows that Bob does not know the action Alice took. If we

46 Chapter 3. Standard and Extended Form Games

Figure 3.7: Game in ex-
tended form that corre-

sponds to the normal form
game from Figure 3.1.

c d

a b a b

Alice

Bob

(2,1) (2,3) (3,4) (4,2)

Figure 3.8: Game
in extended form.

c d

a b a b

Alice

Bob

(2,1) (5,4) (6,3) (1,2)

eliminated the dotted line then in that new game Alice takes an action, which Bob
can see, and then Bob takes his action.

Extended form games, without

the dotted ellipses, are nearly

identical those built by the

minimax algorithm (Russell

and Norvig, 2003, Chapter 6).

In an extended game a player’s strategy si is no longer just an action but can
now be a series of actions if the player gets to take more than one action in the
tree, or if the player can have different actions depending on which node in the tree
it is in. That is, if a player can see others’ actions that come before him then his
action can vary. For example, in figure 3.8 a rational Bob would choose b if Alice
has chosen c but would choose a if Alice has chosen d. As before, agent i’s utility
from strategy s is given by ui(s) and corresponds to the values on the leaf node
reached when all players play s.

3.2.1 Solution Concepts

We can apply the Nash equilibrium idea from normal form games to extended games.
Namely, we say that an extended game has a Nash equilibrium strategy s∗ if for
all agents i it is true that they can’t gain any more utility by playing a strategy
different from s∗i given that everyone else is playing s∗−i. For example, for the game
in figure 3.8 the Nash equilibrium is (c, b)—Alice plays c and Bob plays b. While
this strategy is in equilibrium notice how, if there was some problem or noise in the
system and Alice ends up playing d then Bob’s strategy of playing b is no longer
his best response. That is, the basic Nash equilibrium solution might not be stable
under noisy conditions.

A stronger solution concept is the subgame perfect equilibrium strategy s∗
subgame perfect
equilibrium

which is defined as one where for all agents i and all subgames it is true that i can’t
gain any more utility by playing a strategy different from s∗i . We define a subgame
to be any subtree of the extended game. That is, a subgame perfect equilibrium
gives all the agents their best response strategies for every node in the tree. For
example, the subgame perfect equilibrium for figure 3.8 is for Alice to play c and
Bob to play b if Alice plays c and a if Alice plays d.

Extended form games are a useful way to represent more complex multiagent
interactions. Notice, however, that they are a special case of a multiagent Markov
decision process. Most researchers have opted to use the more complete Markov
model over the simpler extended form game for modeling multiagent systems.

These solution concepts provide us with solutions to shoot for when building
multiagent systems, even when these solutions are impossible to find. For example,
say you want to build a team of robot soccer players. Each robot will have a specific
behavior that depends on its current perception of the world and its internal state.
Each robot can also be assumed to receive a payoff whenever it, or someone in its
team, scores a goal. If you consider the set of all possible agent behaviors for all
agents in the team as the set of actions in a game then we can talk about the players

3.3. Finding a Solution 47

being at a Nash equilibrium, or about the players in one team being in the Pareto
optimum given the other team’s behaviors. Of course, such equilibria are impossible
to calculate but they do give us a precise goal, of the intellectual kind, to shoot for.
Also, as many researchers have done, we can try to break up that immense problem
into smaller problems for which the agents can find equilibrium strategies.

3.3 Finding a Solution

There is an extensive literature on centralized algorithms for finding the various
equilibrium strategies for a given game they are, however, generally considered to
be outside the purview of multiagent research. Generally, the algorithms involve a
complete search using heuristics for pruning. The Gambit software program (McK-

Gambitelvey et al., 2006) is an open source implementation of several of these algorithms.
However, note that some of these solutions can be found by more multiagent-

friendly distributed algorithms. In chapter 5 we show multiagent learning algorithms
which allow learning agents to converge to Nash and other equilibria.

Exercises

3.1 Prove that a social welfare solution must be Pareto optimal.

3.2 Show a 2-person standard form game with 3 actions for each player in which
iterated dominance leads to a unique equilibrium strategy.

3.3 Assume a 2-person standard form game with x actions for each player.

1. What is the maximum number of Pareto optimal pure strategies that
such a game could have?

2. Assuming that all payoff values are different, what is the maximum num-
ber of Pareto optimal pure strategies that such a game could have?

3.4 Find the pure Nash equilibria, and the Pareto optimal solutions of the follow-
ing game:

Alice

d e f

Bob

a 1,2 2,3 2,3

b 4,5 6,7 3,4

c 5,4 6,5 5,6

3.5 The battle of the sexes game, seen in figure 3.4, is a classic coordination game
in which the players must somehow coordinate to agree upon one of the Nash
equilibria. These problems are solved by populations who adopt a social law
after some trial and error adaptation phase. For example, in the US people
drive on the right side of the rode while in England they drive on the left.
Both solutions are equally valid.

coordinationImplement a NetLogo program where each patch repeatedly engages in a
battle of the sexes game with one of its neighbors, chosen at random. Then
try to come up with some simple adaptation strategy which the agents could
use so that the population will quickly converge to an equilibrium.

Simple adaptation strategies for solving this problem exist (Shoham and Ten-
nenholtz, 1997), as well as for more complex neighborhood definitions (Del-
gado, 2002).

http://jmvidal.cse.sc.edu/netlogomas/coordination.html

48 Chapter 3. Standard and Extended Form Games

3.6 Lets say that in a repeated version of the game of chicken, figure 3.5, Alice and
Bob decided to converge to the strategy (Swerve, Swerve). Since this strategy
satisfies the maxmin criteria (check this) the Folk theorem tells us that is will
be stable since both players could play an iterated strategy that penalizes the
other so that any gains from defection are erased after some rounds. Write the
short algorithm which describes the player’s iterated strategy for this situa-
tion, that is, the iterated strategy they must use to guarantee that (Swerve,
Swerve) is the equilibrium strategy on every step of the iterated game.

3.7 A generalization of the Tit-for-Tat strategy is to, instead of simply doing
exactly what the other agent did last time, make a stochastic decision based
on the other agent’s action. That is, if the other agent defected last time
then you will be very likely, with a given probability, to defect and vice versa.
Write a NetLogo program where you add these type of agents to a tournament
similar to Axelrod’s. Which strategy triumphs in the end?

packages This general strategy is known as reciprocity and often occurs in human in-
teraction: you are more likely, but not entirely sure, to be nice to those that
were nice to you in the past. Simulations of populations with various numbers
of reciprocating agents have shown that populations of reciprocating agents
tend to do better as a whole (since they help each other) but can be exploited
by selfish agents. This exploitation can be curbed by having the reciprocating
agents share their opinions of other (Sen, 2002).

http://jmvidal.cse.sc.edu/netlogomas/packages.html

Chapter 4

Characteristic Form Games and Coalition Formation

There is another type of game studied in game theory: the characteristic form
characteristic form

game or coalition game (Osborne and Rubinstein, 1999). In these games the agents
coalition

decide how to form coalitions among themselves and each coalition receives some
utility. For example, a group of people, each with different skills, all want to start
new companies. The problem they face is deciding how to divide themselves into
subgroups such that each subgroup has the needed set of skills to succeed in the
marketplace. Similarly, a group of agents with different skills must decide how to
divide itself into subgroups so as handle as many tasks as possible in the most
efficient manner. Because the agents must cooperate with each other in order to
form coalitions and an agent cannot unilaterally decide that it will form a coalition
with a second agent, these games are known as cooperative games. Multiagent

cooperative games
researchers have also extended the basic characteristic form into to the more general
coalition formation, which we also present in this chapter.

It is interesting to note that most game theory textbooks focus exclusively on
non-cooperative games as these have found many applications in Economics and
Business and have been the focus of most of the research. However, when building
multiagent systems we find that cooperative games are much more useful since they
clearly and immediately model the problem of which agents should perform which
tasks.

4.1 Characteristic Form Games

Formally, a game in characteristic form includes a set A = {1, . . . , |A|} of agents.
The agents are assumed to deliberate and the final result of the deliberation is
an outcome ~u = (u1, . . . , u|A|) ∈ <|A| which is just a vector of utilities, one for

outcome
each agent. There is also a rule V (·) that maps every coalition S ⊂ A to a utility
possibility set, that is V (S) ⊂ <|S|. Notice that V (S) returns a set of utility vectors,
not a single utility vector. As such, V (·) provides us the set of payoffs that players
in S can achieve it they form a coalition. For example, for the players {1, 2, 3} we
might have that V ({1, 2}) = {(5, 4), (3, 6)} meaning that if agents 1 and 2 formed
a coalition they could either get 5 for agent 1 and 4 for agent 2, or they could get 3
for agent 1 and 6 for agent 2. The function V must be defined for all subsets of A.

A special case of the characteristic form game–the one nearly all multiagent
research focuses on—is the transferable utility game in characteristic form. This

transferable utility
game assumes that the players can exchange utilities among themselves as they see
fit. For example, if the utility payments are in the form of money then we only need
to specify the total amount of money the coalition will receive and decide later how
this money will be distributed among the agents in the coalition. More formally, we
define a transferable utility game

Definition 4.1 (Tranferable utility characteristic form game). These games consist
of a set of agents A = {1, . . . , A} and a characteristic function v(S) → < defined
for every S ⊆ A.

The characteristic function v(S) is also sometimes simply referred to as the
characteristic function

value function for the coalitions. Characteristic form games with transferable
value function

49

50 Chapter 4. Characteristic Form Games and Coalition Formation

Figure 4.1: Sample character-
istic form game with transfer-

able utility for three agents:
1, 2 and 3. The table on the
left shows the values of each

coalition. On the right are the
coalition structures. Below

each one we calculate its value.

(1)(2)(3)
2 + 2 + 4 = 8

(1)(23)
2 + 8 = 10

(2)(13)
2 + 7 = 9

(3)(12)
4 + 5 = 9

(123)
9

S v(S)

(1) 2
(2) 2
(3) 4
(12) 5
(13) 7
(23) 8
(123) 9

utility can represent many multiagent scenarios. For example, they can represent a
task allocation problem where a set of tasks has to be performed by a set of agents,
subsets of whom can sometimes improve their performance by joining together to
perform a task. They can represent a sensor network problems where the sensors
must join together in subgroups to further refine their readings or relay important
information, or they can represent workflow scheduling systems where agents must
form groups to handle incoming workflows.

4.1.1 Solution Concepts

As is often the case in game theory, there is no clear best solution to all characteristic
form games. Instead, various solutions concepts have been proposed each one having
its own advantages and disadvantages.

Before defining the solution concepts, we must first notice that the outcome
as we have defined it allows for impossible utility values in the transferable utility
game. Specifically, there might not be a set of coalitions such that, given v, the
agents can all get their utility as promised by ~u. In order to rectify this problem we
first specify that we are only interested in feasible outcomes, that is, those that

feasible
can be implemented given v.

Definition 4.2 (Feasible). An outcome ~u is feasible if there exists a set of coalitions
T = S1, . . . , Sk where

⋃
S∈T S = A such that

∑
S∈T v(S) ≥

∑
i∈A ~ui.

That is, an outcome ~u is feasible if we can find a disjoint set of coalitions whose
values are as much as that in ~u, so we can payoff ~u with v. The set of disjoint
coalitions T defined above is also often referred to as a coalition structure, also

coalition structure
sometimes represented with the symbol CS.

Notice that, if the characteristic function is super-additive then we can check if
an outcome ~u is feasible by simply ensuring that∑

i∈A
~ui = v(A). (4.1)

We define a super-additive domain as one where, for all pairs of disjoint coalitions
super-additive

S, T ⊂ A, we have that v(S ∪ T) ≥ v(S) + v(T). That is, there is nothing to be
lost by merging into a bigger coalition. Unfortunately, multiagent systems are rarely
supper-additive since agents have a habit of getting into each others’ way, so that
a team is not always better than letting each agent work on a task separately.

The problem of finding feasible solutions can best be illustrated with an example.
Figure 4.1 shows a sample transferable utility game for three agents along with the
definition of the v function and all possible coalition formations. In this game the
outcome ~u = {5, 5, 5} is not feasible since there is no way to divide the agents into
subsets such that they can all get their utility. If we tried the coalition (123) then
we only have a value of 9 to distribute and we need a total of 15. On the other
hand, the outcome ~u = {2, 4, 3}, is feasible because the coalition structures (1)(23),
(2)(13), and (123) can satisfy it (but not the other ones). However, ~u = {2, 4, 3}
does have a problem in that in it agent 3 is getting an utility of 3 while we have that
v((3)) = 4. That is, agent 3 could defect any one of the three coalition structures

4.1. Characteristic Form Games 51

(1)(2)(3)
1 + 2 + 2 = 5

(1)(23)
1 + 4 = 5

(2)(13)
2 + 3 = 5

(3)(12)
2 + 4 = 6

(123)
6

S v(S)

(1) 1
(2) 2
(3) 2
(12) 4
(13) 3
(23) 4
(123) 6

~u in Core?

{2, 2, 2} yes
{2, 2, 3} no
{1, 2, 2} no

Figure 4.2: Sample game
showing some outcomes that
are in the core and some that
are not. The characteristic
function v is super-additive.

we found, join the coalition (3), and get a higher utility than he currently has. This
outcome thus seems unstable.

The Core

In general, we say that an outcome ~u is stable if no subset of agents gets paid more,
as a whole, than what they get paid in ~u. Stability is a nice property because it
means that the agents do not have an incentive to go off into their own coalition.
Our first solution concept, the core, refers to all the outcomes that are stable.

core

Definition 4.3 (Core). An outcome ~u is in the core if

1.
∀S⊂A :

∑
i∈S

~ui ≥ v(S)

2. it is feasible.

The first condition in this definition tells us that the utility the agents receive
in outcome ~u is bigger than those of any coalition, for the agents in the coalition.
In other words, that there is no coalition S whose v(S) is bigger than the sum of
payments the agents in S get under ~u. The second condition merely checks that the
total utility we are giving out is not more than what is coming in via v(·).

Lloyd F. Shapley. –.

Responsible for the core and

Shapley value solution

concepts.

Figure 4.2 shows a new game with different payments and a list of outcomes some
of which are in the core and some which are not. {2, 2, 2} is in the core because it
is feasible and there is no subset of agents S with a v(S) that is bigger than what
they could get in this outcome. {2, 2, 3} is not in the core because it is not feasible.
This outcome adds up to 7 and there is no coalition structure that adds up to 7.
Note that, since the v is super-additive, all we need to check is the grand coalition.
Finally, {1, 2, 2} is not in the core because agents 1 and 2 are getting a total of 3
while if they formed the coalition (12) they would get a utility of 4.

We like the core because we know that any solution that is in the core cannot
be improved by having any of the 2A subsets of agents form a coalition of higher
value than they are getting now. It is a very stable solution. Unfortunately, there
are many games with empty cores. Figure 4.3 shows one such example. Try to find
an outcome in the core for this example. You will see that every outcome is blocked
by some other outcome.

Another problem with the core solutions is that when it is not empty then
there are often many outcomes in the core. For example, in figure 4.2 any outcome
~u = {x, y, z} where x + y + z ≤ 6 and x + y ≥ 4 and x + z ≥ 3 and y + z ≥ 4
is in the core. Thus, we still have a coordination or negotiation problem where we
must choose between these coalitions. Finally, there is the fact that the outcome
does not tell us which coalitions are formed. For example, if we choose the outcome
~u = {2, 2, 2} then we must still also choose a coalition structure as there are two
which would work: (123) and (12)(3).

52 Chapter 4. Characteristic Form Games and Coalition Formation

Figure 4.3: Set of payments
for a game with an empty core

S v(S)

(1) 0
(2) 0
(3) 0
(12) 10
(13) 10
(23) 10
(123) 10

Figure 4.4: Example game.
If the agents form coalition

(12) then how much util-
ity should each one get?

S v(S)

() 0
(1) 1
(2) 3
(12) 6

The Shapley Value

While the core gives us one possible solution, it suffers from the fact that many
games don’t have any solutions in the core and from its lack of guidance in fairly
distributing the payments from a coalition to its members. The Shapley value solves
these problems by giving us one specific set of payments for coalition members,
which are deemed fair.

The problem with identifying fairness in characteristic form games is best illus-
trated by an example. Figure 4.4 shows a game for two players. Clearly, we should
choose the coalition (12) as it has the highest value. Now we must decide how
much each agent should get. The simplest solution is to divide the total of 6 evenly
amongst the coalition members, so that each agent gets 3. This seems unfair to
agent 2 because agent 2 could have gotten 3 by simply staying on its own coalition
(2). It seems like the fair thing to do is to give each agent a payment that is pro-
portional to the value it contributes to the coalition, that is, the amount that value
increases by having the agent in the coalition. But, how do we extend this idea to
cases with more than 2 agents?

Shapley was able to extend this idea by realizing that each agent should get a
payment that corresponds to its marginal contribution to the final value. An agent’s
marginal contribution to a coalition is the difference between the value before the
agent joins the coalition and after he joined. For example, if before you join Initech
their annual profits are $10M but after you are there for a year they increase to $11M
then you can claim that your marginal contribution is to Initech is $1M assuming,
of course, that everything else stays the same during that year.

The one remaining problem is that there are many different orderings in which n
agents could have joined the coalition, namely, there are n! orderings of n elements.
The Shapley value simply averages over all possible orderings. That is, the Shapley

Shapley value value gives each agent a utility proportional to its average marginal contribution
to every possible coalition, in every possible order it could have been formed. More
formally, we define the Shapley value as:

Definition 4.4 (Shapley Value). Let B(π, i) be the set of agents in the agent or-
dering π which appear before agent i. The Shapley value for agent i given A agents
is given by

φ(A, i) =
1
A!

∑
π∈ΠA

v(B(π, i) ∪ i)− v(B(π, i)),

where ΠA is the set of all possible orderings of the set A. Another way to express
the same formula is

φ(A, i) =
∑
S⊆A

(|A| − |S|)! (|S| − i)!
|A|!

[v(S)− v(S − {i})].

4.1. Characteristic Form Games 53

Notice that the Shapley values are calculated for a particular coalition A in the
definition above. They are not meant as a way of determining which is the best
coalition structure. They can only be used to distribute the payments of a coalition
once it is formed.

Lets calculate the Shapley values for the game in figure 4.4 and the grand coali-
tion (12). Since there are only two agents it means that there are only two possible
orderings: (12) and (21). As such we have that

φ({1, 2}, 1) =
1
2
· (v(1)− v() + v(21)− v(2))

=
1
2
· (1− 0 + 6− 3) = 2

φ({1, 2}, 2) =
1
2
· (v(12)− v(1) + v(2)− v())

=
1
2
· (6− 1 + 3− 0) = 4

A somewhat surprising and extremely useful characteristic of the Shapley value is
that it is always feasible. In our example the payments of 4 and 2 add up to 6
which is the same value we get in the grand coalition (12). Another nice feature of
the Shapley value is that it always exists and is unique. Thus, we do not have to
worry about coordination mechanism to choose among different payments. A final
interesting result is that the Shapley value might not be in the core, even for cases
where the core exists. This is a potential problem as it means that the resulting
payments might not be stable and some agents might choose to leave the coalition
in order to receive a higher payment on a different coalition.

Unfortunately, while the Shapley value has some very attractive theoretical prop-
erties, it does have some serious drawbacks when we try to use it for building mul-
tiagent systems. The biggest problem is computational. The Shapley value requires
us to calculate at least 2|A| orderings, this is only possible for very small sets A. It
also requires that we know the value of v for every single subset S. In many real-
world applications the calculation of v is complex. For example, it might require
simulating how a particular coalition of agents would work together. These complex
calculations could dramatically increase the total time. Finally, the Shapley value
does not give us the actual coalition structure. Thus, it only solves the second part
of the coalition formation problem. We must still determine which coalition the
agents will form and how they will do it.

The Nucleolus

Since the core is often empty, researchers started looking for ways of relaxing it and
find a new solution concept that would exist for every game. The problem with the
core is that it says that there is no subset of agents that could get paid more than
what they are currently getting paid in ~u, because then they would be tempted to
defect and form a new coalition. If it is impossible to find such an ~u then the next
best thing would be to find the ~u that minimizes the total temptation felt by the
agents. That is what the nucleolus aims to do.

nucleolus
We start by clarifying what we mean by temptation. Specifically, a coalition S is

more tempting the higher its value is over what the agents get in ~u. This is known
as the excess.

excess

Definition 4.5 (excess). The excess of coalition S given outcome ~u is given by

e(S, ~u) = v(S)− ~u(S),

where
~u(S) =

∑
i∈S

~ui.

54 Chapter 4. Characteristic Form Games and Coalition Formation

That is, a coalition S has a positive excess, given ~u, if the agents in S can get
more from v(S) than they can from ~u. The more they can get from S the higher
the excess. Note that, by definition, if an outcome ~u is in the core then all coalitions
have a excess that is less than or equal to 0 with respect to that outcome. But, since
we are now concerned with outcomes that are not in the core we will instead look
for those with minimal excess. Since excess is defined for all possible subsets S we
first need a way to compare the excesses of two outcomes. We do this by putting
them in a sorted list and comparing the list. The one with the higher excess first is
declared more excessive. More formally, for each ~u we find its excess for all subsets
S and order these in a list; the higher excesses come first, as such

θ(~u) = 〈e(S~u1 , ~u), e(S~u2 , ~u), . . . , e(S~u2|A| , ~u)〉, (4.2)

where e(S~ui , ~u) ≥ e(S~uj , ~u) for all i < j. We then define a lexicographical ordering �
over these lists where θ(~u) � θ(~v) is true when there is some number q ∈ 1 . . . 2|A|

such for all p < q we have that e(S~up , ~u) = e(S~vp , ~v) and e(S~uq , ~u) > e(S~vq , ~v) where
the Si have been sorted as per θ. That is, if θ(~u) � θ(~v) then that means that when
we sort their excesses for all subsets their first, and greatest, excesses are all the
same and on the first set for which they have a discrepancy ~u has the highest excess.
For example, if we had the lists {(2, 2, 2), (2, 1, 0), (3, 2, 2), (2, 1, 1)} they would be
ordered as {(3, 2, 2), (2, 2, 2), (2, 1, 1), (2, 1, 0)}.

We can now define the nucleolus as the ~u which is not lexicographically bigger
nucleolus

than anyone else.

Definition 4.6 (nucleolus). The nucleolus is the set

{~u | θ(~u) 6 �θ(~v) for all ~v, given that ~u and ~v are feasible.}

In other words, the outcomes in the nucleolus are those where the excesses for all
possible sets are lexicographically not greater than those of any other outcome. A
nice feature of the nucleolus is that it is always unique for each coalition structure.
That is, given a coalition structure there is only one nucleolus.

The nucleolus captures, to some degree, the idea of an outcome that minimizes
the temptation the agents face. However, notice that the lexicographic order it
defines only cares about the first coalition that has a higher excess, it does not
care about the ones after that. This could lead to a situation where the sum of the
excesses from the nucleolus is actually larger than that of some other outcome. For
example, (5.0, 0, 0) comes before (4, 3, 3, 3). As such, the nucleolus does not seem to
minimize the sum of temptations.

Equal Excess

Another technique for calculating the agents’ payoff, besides the Shapley value, is
called equal excess. It is an iterative algorithm where we adjust the payments

equal excess
that the agents expected they will receive from each coalition that includes them.
At each time step t we let Et(i, S) be agent i’s expected payoff for each coalition S
which includes him. Initially these are set to 0. We thus let

At(i, S) = max
T 6=S

Et(i, T) (4.3)

be agent i’s expected payment from not choosing S and instead choosing the best
alternative coalition. Then, at each time step we update the players’ expected pay-
ments using

Et+1(i, S) = At(i, S) +
v(S)−

∑
j∈S A

t(j, S)
|S|

. (4.4)

For example, for the value function given in figure 4.4 we start with E0(1, ∗) =
E0(2, ∗) = 0. Then, at time 1 agent 1 can update E1(1, (1)) = 1 and E1(1, (12)) = 3

4.1. Characteristic Form Games 55

(1)(2)(3)(4)

(12)(3)(4) (13)(2)(4) (14)(2)(3) (23)(1)(4) (24)(1)(3) (34)(1)(2)

(1)(234) (2)(134) (3)(124) (4)(123) (12)(34) (14)(23) (13)(24)

(1234)

Figure 4.5: Coalition struc-
ture formation possibilities for
four agents, organized by the
number of coalitions.

Level Bound

A A/2
A− 1 A/2
A− 2 A/3
A− 3 A/3
A− 4 A/4
A− 5 A/4

: :
2 A
1 none

Figure 4.6: Bounds on opti-
mality after searching various
levels.

and then A1(1, (1)) = 3 and A1(1, (12)) = 1, while agent 2 updates E1(2, (2)) = 3
and E1(2, (12)) = 3 and then A1(1, (1)) = 3 and A1(1, (12)) = 3.

It has been shown that this basic algorithm does not always converge to a fixed
point, however, variations of it have been proposed which do converge, such as pact
(Goradia and Vidal, 2007). In pact the agents calculate their own E values and
exchange them with others under the assumption that agents will not lie about
these values. The algorithm ensures that the process will stop and a solution will
be found.

Notice that equal excess is a procedural solution to the problem so we do not
know which specific outcome the agents will converge to, other than to say that
they will converge to the outcome that is found when we use equal excess.

4.1.2 Finding the Optimal Coalition Structure

As multiagent system designers we often simply want to find the outcome that
maximizes the sum of values. That is, we want to find the utilitarian solution.

utilitarian
When the characteristic function is super-additive then the grand coalition will have
the highest value and thus finding the utilitarian solution is trivial. However, if the
characteristic is not super-additive—as is often the case in multiagent systems—
then we will want an algorithm for finding it. Notice that under this formulation
we are no longer interested in the specific outcome (that is, individual payments to
agents) we are now only interested in finding best coalition structure, ignoring the
problem of dividing up the value of each coalition among its participants.

Centralized Algorithm

One proposed approach is to a perform a complete search of the complete set of
possible coalition structures, but in a specified order. Figure 4.5 shows all the pos-
sible coalition structures for four agents. Notice that the bottom two rows contain
all possible coalitions. This means that after searching those two rows we have seen
all possible coalitions. If we let S∗ be the value of the highest valued coalition (not
coalition structure) found after searching those two rows then we know that the
best coalition structure cannot be more than A · S∗. As such, after searching the
bottom two levels we can say that the optimal solution is no more than A times
better than the best solution we have found thus far.

56 Chapter 4. Characteristic Form Games and Coalition Formation

Figure 4.7: Distributed algo-
rithm for coalition formation.

Each agent i must execute this
function. We let vi(S) = v(S)

|S|

Find-Coalition(i)
1 Li ← set of all coalitions that include i.
2 S∗i ← arg maxS∈Li

vi(S)
3 Broadcast S∗i and wait for all other broadcasts, put these into S∗ set.
4 Smax ← arg maxs∈S∗ vi(s)
5 if i ∈ Smax

6 then join Smax

7 return
8 for j ∈ Smax

9 do Delete all coalitions in Li that contain j
10 if Li is not empty
11 then goto 2
12 return

Figure 4.6 shows the bounds that can be calculated after examining each of the
levels in the graph. One simple algorithm consists of first searching the bottom two
levels then continue searching down from the top level (Sandholm et al., 1999). In
this way, the bound from optimal is reduced as indicated in the figure. Note that
searching the levels in some other order will not guarantee these bounds. Notice also
that the number of coalition structures in the second level is given by its Stirling

Stirling number

Stirling(A, 2) =
1
2

1∑
i=0

(−1)i
(

2
i

)
(2− i)A = 2A−1 − 1. (4.5)

So it takes exponential time just to search the second level. In general, the number
of coalition structures for all levels is equal to the Stirling number for that level.

There also exists an algorithm for finding the optimal coalition structure which
has slightly better bounds than the ones we just presented, but running time remains
exponential and unusable for large number of agents (Dang and Jennings, 2004).

Distributed Algorithm

While the previous algorithm found the optical coalition structure, it did so at the
expense of a lot of computation and in a centralized manner. We now look at one
possible way of finding a good, but possibly not optimal, coalition structure in a
decentralized manner.

find-coalition Figure 4.7 shows a distributed algorithm for coalition formation (Shehory and
Kraus, 1998). The agents order all their possible coalitions based on how much each
will get in that coalition, where each agent i gets vi(S) = v(S)/|S| if it joins coalition
S. The agents then broadcast the name of their best coalition. The coalition with
maximal v(S)/|S| is chosen by the agents in S who join the coalition and drop out of
the algorithm. The remaining agents take note of the missing agents by eliminating
from consideration all coalitions that include them. The process is then repeated
again with the new set of coalitions.

This is a classic example of a greedy or hill-climbing algorithm. As such, we
know that it might get stuck on one of the local optima, which might or might not
be the global optimum. Still, the algorithm should execute very fast as there are
at most A steps and each step involves having each agent examine all the possible
coalitions that it can be participate in.

A slight modification of the algorithm would be to, instead of broadcasting at
each time step we could let the agents meet randomly and form a coalition if vi(s)
is maximal for all agents in s. Imagine the agents moving around in a space and
forming sets whenever a group of them happen to be close to each other, then
forming a coalition only if that set has a maximal value. This process is effectively
the same as broadcasting except that it eliminates the need to broadcast at the
expense of taking a longer time to converge (Sarne and Arponen, 2007).

http://jmvidal.cse.sc.edu/netlogomas/find-coalition.html

4.2. Coalition Formation 57

Reduction to Constraint Optimization

We note that the problem of finding the optimal coalition structure can be reduced
to a constraint optimization problem. The basic idea is that for n agents there will
be at most n coalitions as, at worst, each agent will stay in the individual coalition.
Thus, we can imagine the problem as consisting of n agents each one deciding which
of n rooms to go into. The agents are the variables and the rooms are the domains.
The agents in a room form a coalition and empty rooms are ignored. We set a
constraint for each room equal to −v(s) where s is the set of agents that choose
that room, or 0 if no agents choose it. We then have a constraint optimization
problem where we are trying to the set of values which minimizes the sum of the
constraint violations, thus maximizing the sum of the valuations.

Note that this is a degenerate case of the constraint optimization problem in
that all the n constraints are over all agents. Most constraint problems exhibit some
degree of locality in that constraints are only over a small subset of the variables.
Having all constraints be over all variables makes this problem harder than average.
Thus this reduction is likely to be only of theoretical interest.

4.2 Coalition Formation

The coalition formation problem, as studied in multiagent systems, extends the
coalition formation

basic characteristic form game in an effort to make it a better match for real world
problems. A coalition formation problem consists of three steps.

1. Agents generate values for the v(·) function.

2. Agents solve the characteristic form game by finding a suitable set of coali-
tions.

3. Agents distribute the payments from these coalitions to themselves in a suit-
able manner.

Steps 2 and 3 can be thought of as part of the traditional characteristic form
game. The coalition formation definition simply chooses to split the problem of
finding a suitable outcome ~u into two parts: finding the coalitions and then dividing
the payments. The split mirrors the requirements of many application domains.
Step 1 is completely new. It is there because in many domains it is computationally
expensive to determine the value of v(S) for a given S. For example, if the agents
are trying to form groups that solve particular tasks then calculating v(S) requires
them to determine out how well they can perform the task as a group, which requires
considering how all their different skills can be brought to bear and, in some common
scenarios, requires the development of a full plan—an exponential problem. The
approaches at solving step 1 are thus generally dependent on the domain and do
not generalize well.

Exercises

4.1 Give an example problem in which agents using equal excess and reporting
their own E values will want to lie about their own E values.

4.2 Find the set of core solutions and the Shapley value of the grand coalition for

the following game:

S v(S)

(1) 1
(2) 2
(3) 3
(12) 5
(13) 4
(23) 5
(123) 5

58 Chapter 4. Characteristic Form Games and Coalition Formation

4.3 Say you have robots which live in a 2-dimensional grid and each one has a
strength given by a number in the set {1, 2, 3, 4, 5}. There are boxes in this
world, each one of which must be moved to a specified destination. The speed
with which a set of robots S can move a box is given by 1−1/

∑
i∈S i.strength.

• Formulate this problem as a characteristic form game and provide a v(S)
definition.

• Find a good algorithm for calculating the optimal coalition structure.

4.4 Modify the find-coalition algorithm from figure 4.7 so that instead of
the agents broadcasting their values they move around randomly in a two-
dimensional space. After each time step the set of agents in a tile checks if
they form a maximal coalition, that is, there is no other coalitions that gives
one of the agents a higher vi(S) value. If so, they form that coalition and leave
the game while the rest keep moving. Implement this algorithm in NetLogo
and check how long it takes to find a solution.

4.5 We can extend the problem of coalition formation and make it more realistic by
defining the value function over a set of possible agent abilities and then giving
the agents sets of abilities (Yokoo et al., 2005). We then face the possibility of
an agent pretending to be multiple agents, each with a different ability. Why
would an agent do this? Give an example when an agent benefits from this
technique.

Another problem might be agents that fail to mention to others that they
have certain skills. Why would an agent do this? Give an example when an
agent benefits from this technique.

Chapter 5

Learning in Multiagent Systems

Machine learning algorithms have achieved impressive results. We can write software
that processes larger amounts of data than any human can and which can learn
to find patterns that escape even the best experts in the field. As such, it is only
reasonable that at some point we will want to add learning agents to our multiagent
system. There are several scenarios in which one might want to add these learning
agents.

Many multiagent systems have as their goal the exploration or monitoring of a
given space, where each agent has only a local view of its own area. In these scenarios
we can envision that each agent learns a map of its world and the agents further
share their maps in order to aggregate a global view of the field and cooperatively
decide which areas need further exploration. This is a form of cooperative learning.

Another scenario is in competitive environments each selfish agent tries to maxi-
mize its own utility by learning the other agents’ behaviors and weaknesses. In these
environments we are interested in the dynamics of the system and in determining
if the agents will reach a stable equilibrium. At their simplest these scenarios are
repeated games with learning agents.

To summarize, agents might learn because they don’t know everything about
their environment or because they don’t know how the other agents behave. Fur-
thermore, the learning can happen in a cooperative environment where we also want
the agents to share their learned knowledge, or in a competitive environment where
we want them to best each other. We present analysis and algorithms for learning
agents in these various environment.

5.1 The Machine Learning Problem

Before delving into multiagent learning we first present a high level view of what
we mean by machine learning. The word “learning” as used casually can have

machine learning
many different meanings, from remembering to deduction, but machine learning
researchers have a very specific definition of the machine learning problem.

The goal of machine learning research is the development of algorithms that
increase the ability of an agent to match a set of inputs to their corresponding
outputs (Mitchell, 1997). That is, we assume the existence of a large set of examples
E. Each example e ∈ E is a pair e = {a, b} where a ∈ A represents the input the
agent receives and b ∈ B is the output the agent should produce when receiving this
input. The agent must find a function f which maps A→ B for as many examples
of A as possible. For example, A could be a set of photo portraits, B could be the
set {male, female}, and each element e tells the program if a particular photo is
of a man or of a woman. The machine learning algorithm would have to learn to
differentiate between a photo of a man and that of a woman.

In a controlled test the set E is usually first divided into a training set which
is used for training the agent, and a testing set which is used for testing the per-
formance of the agent. However, in some scenarios it is impossible to first train
the agent and then test it. In these cases the training and testing examples are
interleaved. The agent’s performance is assessed on an ongoing manner.

Figure 5.1 shows a graphical representation of the machine learning problem. The

59

60 Chapter 5. Learning in Multiagent Systems

Figure 5.1: The machine learn-
ing problem. The input set A

corresponds to the two axis:
Weight and Speed. The out-

puts B are the set {+,−}. The
lines represent three possi-

ble functions f which, in this
case, map anything within
the lines as a − and any-

thing outside as a +. Note
that all functions have cor-

rectly solved the learning
problem but in different ways. Weight

Sp
ee

d

+

+

+

+

+

+
+

+

+ −

−−

−−

−
−

f3

f1

f2

learning problem is coming up with a function that maps all the points in the space
to either + or − such that it will also correctly categorize any new examples that we
have not seen. Our function must, therefore, extrapolate from the examples it has
seen and generalize to all possible instances. That is, machine learning performs
induction over the set of examples it has seen in order to categorize all future

induction
examples.

Figure 5.1 shows three different functions, f1, f2, and f3, each one of which
correctly solves the learning problem. That is, they are all correct inductions since
they correctly categorize all the examples. In fact, there are an infinite number of
such functions. One might wonder which one is the best one to use. We don’t have
a general answer to that question. Each learning algorithm, from reinforcement
learning to support vector machines, arrives at one learned function but the choice
is arbitrary. That is, given the same examples two learning algorithms can learn
to perfectly classify them but still have learned different functions. This effect is
known as the induction bias of a learning algorithm. It is because of this induction

induction bias
bias that some learning algorithms appear to perform better than others in certain
domains—their bias coincides with the implicit structure of the problem. However,
we know that in general, that is, averages over all possible learning problems there
is no learning algorithm that outperforms all others, a fact that has been formalized
by the no free lunch theorem (Wolpert and Macready, 1995). Still, in practice

no free lunch theorem
we, as designers, do know a lot about any specific problem to be learned. You should
always try to integrate this knowledge into the learning algorithm you are using.

When a learning agent is placed in a multiagent scenario some of the fundamen-
tal assumptions of machine learning are violated. The agent is no longer learning to
extrapolate from the examples it has seen of fixed set E, instead it’s target concept
keeps changing (the points in figure 5.1 keep moving), leading to a moving tar-
get function problem (Vidal and Durfee, 1998b). In general, however, the target

moving target function
concept does not change randomly; it changes based on the learning dynamics of
the other agents in the system. Since these agents also learn using machine learning
algorithms we are left with some hope that we might someday be able to understand
the complex dynamics of these type of systems.

Learning agents are most often selfish utility maximizers. These agents often face
each other in encounters where the simultaneous actions of a set of agents leads to
different utility payoffs for all the participants. For example, in a market-based
setting a set of agents might submit their bids to a first-price sealed-bid auction.
The outcome of this auction will result in a utility gain or loss for all the agents. In
a robotic setting two agents headed in a collision course towards each other have to
decide whether to stay the course or to swerve. The results of their combined actions
have direct results in the utilities the agents receive from their actions. However,
even agents that are trying to learn for themselves might find utility in sharing this
knowledge.

5.2. Cooperative Learning 61

j

c d

i
a 0,0 5,1

b -1,6 1,5

Figure 5.2: Sample two-player
game matrix. Agent i chooses
from the rows and agent j
chooses from the columns.

5.2 Cooperative Learning

Imagine two robots equipped with wireless communication capabilities and trying to
map an unknown environment. One of the robots could learn that the red rocks can
be moved but the black rocks are too heavy to move. The robot could communicate
this information to the other one so that it does not have to re-learn it. Similarly,
once one robot has built a map of one area it could send this map to the other
robot. Of course, this scenario assumes that the two robots are cooperating with
each other in order to build the map.

This type of problem is easy to solve when the robots are identical. In this
case they can simply tell each other everything that they learn knowing that it
will be equally applicable to the other one. One challenge is trying to prevent the
robots from telling each other things the other already knows. The problem gets
much harder when the robots are heterogeneous. For example, one robot might
have learned that the black rocks can be moved using its large arm but the other
robot might not have an arm that large so this knowledge is useless to him. To
solve this problem we need to somehow model the agents’ capabilities so as to allow
one agent to determine which parts of his learned knowledge will be useful to an
agent with a different set of capabilities. To date, there is scant research on general
approaches to the problem of sharing learned knowledge. Most systems that share
learned knowledge among agents, such as (Stone, 2000), simply assume that all
agents have the same capabilities.

5.3 Repeated Games

We now focus on the problem of learning in repeated games (Fudenberg and
repeated games

Levine, 1998). In these problems we have two players that face each other repeatedly
on the same game matrix, like the one shown in figure 5.2, and each one tries to
maximize the sum of its payoffs over time. You will remember that we already saw
a specific version of this problem called the iterated prisoner’s dilemma.

The theory of learning in games studies the equilibrium concepts dictated by
various simple learning mechanisms. That is, while the Nash equilibrium is based on
the assumption of perfectly rational players, in learning in games the assumption is
that the agents use some kind of algorithm. The theory determines the equilibrium
strategy that will be arrived at by the various learning mechanisms and maps these
equilibria to the standard solution concepts, if possible. Many learning mechanisms
have been studied. The most common of them are explained in the next few sub-
sections.

5.3.1 Fictitious Play

A widely studied model of learning in games is the process of fictitious play. In
fictitious play

it agents assume that their opponents are playing a fixed strategy. The agents use
their past experiences to build a model of the opponent’s strategy and use this
model to choose their own action. Given that all agents are using fictitious play we
try to determine if their learning will converge and, if so, to which strategy.

Fictitious play uses a simple form of learning where an agent remembers every-
thing the other agents have done and uses this information to build a probability
distribution for the other agents’ expected strategy. Formally, for the two agent
case we say that agent i maintains a weight function ki : Sj → R+. The weight

62 Chapter 5. Learning in Multiagent Systems

Figure 5.3: Example of fic-
titious play. The matrix is

shown above and the values
at successive times, each on

a different row, are shown on
the table below. The first row

corresponds to time 0. Note
that only i is using fictitious
play, j plays the values as in

the sj column. i’s first two ac-
tions are stochastically chosen.

j

c d

i
a 0,0 1,2

b 1,2 0,0

si sj ki(c) ki(d) Pri[c] Pri[d]

a c 1 0 1 0

b d 1 1 .5 .5

a d 1 2 1/3 2/3

a d 1 3 1/4 3/4

a d 1 4 1/5 4/5

function changes over time as the agent learns. The weight function at time t is
represented by kti . It maintains a count of how many times each strategy has been
played by each other player j. When at time t − 1 opponent j plays strategy st−1

j

then i updates its weight function with

kti(sj) = kt−1
i (sj) +

{
1 if st−1

j = sj ,
0 if st−1

j 6= sj .
(5.1)

Using this weight function, agent i can assign a probability to j playing any of
its sj ∈ Sj strategies with

Prti[sj] =
kti(sj)∑

s̃j∈Sj
kti(s̃j)

. (5.2)

That is, i assumes j will pick its action stochastically given the values in ki(sj).stochastically
Player i then determines the strategy that will give it the highest expected utility
given that j will play each of its sj ∈ Sj with probability Prti[sj]. In other words, i
determines its best response to a probability distribution over j’s possible strategies.
In effect, i is assuming that j’s strategy at each time is taken from some fixed but
unknown probability distribution.

An example of the best response dynamic at work is shown in figure 5.3. Here
we see the values for agent i and its best responses to agent j’s action. Note that in
this example agent j is not using best response. Agent i first notices that j played
c and thus sets k1

i (c) = 1. It therefore predicts that j will play c with probability 1
so its best response at time 2 is to play b, as seen in the second row. Agent j then
plays d which makes i have Pr1

i [c] = Pr1
i [d] = .5. Both of i’s actions have the same

expected payoff (1) so it randomly chooses to play b. After that, when j plays d
again then i’s best response is unequivocally b.

Several interesting results have been derived by research in repeated games.
These results assume that all players are using fictitious play. For example, we
know that the Nash equilibrium remains a powerful attractor.

Theorem 5.1 (Nash Equilibrium is Attractor to Fictitious Play). If s is a strict
Nash equilibrium and it is played at time t then it will be played at all times greater
than t (Fudenberg and Kreps, 1990).

Intuitively, we can see that if the fictitious play algorithm leads all players to play
the same Nash equilibrium then, afterward, they will all increase the probability
that all others are playing the equilibrium because they just saw them play it. Since,
by definition, the best response of a player when everyone else is playing a strict
Nash equilibrium is to play the same equilibrium, then all players will play the same
strategy and the next time. The same holds true for every time after that. More
importantly, Nash is also where we will converge to.

Theorem 5.2 (Fictitious Play Converges to Nash). If fictitious play converges to a
pure strategy then that strategy must be a Nash equilibrium (Fudenberg and Kreps,
1990).

5.3. Repeated Games 63

j

c d

i
a 0,0 1,1

b 1,1 0,0

si sj ki(c) ki(d) kj(a) kj(b)

1 1.5 1 1.5

a c 2 1.5 2 1.5

b d 2 2.5 2 2.5

a c 3 2.5 3 2.5

b d 3 3.5 3 3.5
Figure 5.4: A game matrix
with an infinite cycle.

We can show this by contradiction. If fictitious play converges to a strategy that
is not a Nash equilibrium then this means that the best response for at least one of
the players is not the same as the convergent strategy. Therefore, that player will
take that action at the next time, taking the system away from the strategy profile
it was supposed to have converged to.

An obvious problem with the solutions provided by fictitious play can be seen
in the existence of infinite cycles of actions. An example is illustrated by the game
matrix in figure 5.4. If the players start with initial weights of k1

i (c) = 1, k1
i (d) = 1.5,

k1
j (a) = 1, and k1

j (b) = 1.5 they will both believe that the other will play b or d
and will, therefore, play a or c respectively. The weights will then be updated to
k2
i (c) = 2, k2

i (d) = 1.5, k2
j (a) = 2, and k2

j (b) = 1.5. Next time, both agents will
believe that the other will play a or c so both will play b or d. The agents will engage
in an endless cycle where they alternatively play (a, c) and (b, d). The agents end
up receiving the worst possible payoff.

This example illustrates the type of problems we encounter when adding learning
to multiagent systems. Most learning algorithms can easily fall into cycles such as
this one. One common strategy for avoiding this problem is the use of randomness.
Agents will sometimes take a random action in an effort to exit possible loops and
to explore the search space. It is interesting to note that, as in the example from
figure 5.4, it is often the case that the loops the agents fall in often reflect one of the
mixed strategy Nash equilibria for the game. That is, (.5, .5) is a Nash equilibrium
for this game. Unfortunately, if the agents are synchronized, as in this case, the
implementation of a mixed strategy could lead to a lower payoff.

Games with more than two players require that we decide whether the agent
should learn individual models of each of the other agents independently or a joint
probability distribution over their combined strategies. Individual models assume
that each agent operates independently while the joint distributions capture the
possibility that the others agents’ strategies are correlated. Unfortunately, for any
interesting system the set of all possible strategy profiles is too large to explore—it
grows exponentially with the number of agents. Therefore, most learning systems
assume that all agents operate independently so they need to maintain only one
model per agent.

5.3.2 Replicator Dynamics

Another widely studied learning model in repeated games is replicator dynam-
ics. This model assumes that the fraction of agents playing a particular strategy

replicator dynamics
will grow in proportion to how well that strategy performs in the population. A
homogeneous population of agents is assumed. The agents are randomly paired in
order to play a symmetric game, that is, a game where both agents have the same
set of possible strategies and receive the same payoffs for the same actions. The
replicator dynamics model is meant to capture situations where agents reproduce
in proportion to how well they are doing and is inspired by biological evolution. In
fact, the field that studies these type of solution concepts is known as evolutionary
game theory (Weibull, 1997).

evolutionary game
theoryFormally, we let φt(s) be the number of agents using strategy s at time t. We

64 Chapter 5. Learning in Multiagent Systems

can then define

θt(s) =
φt(s)∑

s′∈S φ
t(s′)

(5.3)

to be the fraction of agents playing s at time t. The expected utility for an agent
playing strategy s at time t is defined as

ut(s) =
∑
s′∈S

θt(s′)u(s, s′), (5.4)

where u(s, s′) is the utility than an agent playing s receives against an agent
playing s′. Notice that this expected utility assumes that the agents face each other
in pairs and choose their opponents randomly. In the replicator dynamics the re-
production rate for each agent is proportional to how well it did on the previous
step. Thus, the number of agents playing s at the next time step is given by

φt+1(s) = φt(s)(1 + ut(s)). (5.5)

evolutionarygt Notice that the number of agents playing a particular strategy will continue to
increase as long as the expected utility for that strategy is greater than zero. Only
strategies whose expected utility is negative will decrease in population. As such,
the size of a population will constantly fluctuate. However, when studying replicator
dynamics we ignore the absolute size of the population and focus on the fraction of
the population playing a particular strategy. We are also interested in determining
if the system’s dynamics will converge to some strategy and, if so, which one.

In order to study these systems using the standard solution concepts we view
the fraction of agents playing each strategy as a mixed strategy for the game. Since
the game is symmetric we can use that strategy as the strategy for both players, so
it becomes a strategy profile. We say that the system is in a mixed Nash equilibrium
if the fraction of players playing each pure strategy is the same as the probability of
the corresponding strategy in the mixed Nash equilibrium. For a pure equilibrium
all players must play that strategy. For example, if half the agents are playing a
and half b then we can consider this a mixed Nash equilibrium where a and b are
each played with .5 probability.

An examination of these systems quickly leads to the conclusion that

Theorem 5.3 (Nash equilibrium is a Steady State). Every Nash equilibrium is a
steady state for the replicator dynamics (Fudenberg and Levine, 1998).

We can prove this theorem by contradiction. If an agent had a pure strategy
that would return a higher utility than any other strategy then this strategy would
be a best response to the Nash equilibrium. If this strategy was different from the
Nash equilibrium then we would have a best response to the equilibrium which is
not the equilibrium, so the system could not be at a Nash equilibrium.

The reverse has also been shown to be true.

Theorem 5.4 (Stable Steady State is a Nash Equilibrium). A stable steady state
of the replicator dynamics is a Nash equilibrium. A stable steady state is one that,
after suffering from a small perturbation, is pushed back to the same steady state by
the system’s dynamics (Fudenberg and Levine, 1998) .

These states are necessarily Nash equilibria because if they were not then there
would exist some particular small perturbation which would take the system away
from the steady state. This correspondence was further refined to show that

Theorem 5.5 (Asymptotically Stable is Trembling-Hand Nash). An asymptotically
stable steady state corresponds to a Nash equilibrium that is trembling-hand perfect
and isolated. That is, the stable steady states are a refinement on Nash equilibria—
only a few Nash equilibria are stable steady states (Bomze, 1986).

http://jmvidal.cse.sc.edu/netlogomas/evolutionarygt.html

5.3. Repeated Games 65

j

a b c

i

a 1,1 2,2 0,0

b 0,0 1,1 2,2

c 2,2 0,0 1,1

a c

b

Figure 5.5: Visualization of
the evolution of populations in
replicator dynamics. The game
is shown in the top left.

On the other hand, it is also possible that a replicator dynamics system will never
converge. In fact, there are many examples of simple games with no asymptotically
stable steady states.

While replicator dynamics reflect some of the most troublesome aspects of learn-
ing in multiagent systems some differences are evident. These differences are mainly
due to the replication assumption. Agents are not usually expected to replicate, in-
stead they acquire the strategies of others. For example, in a real multiagent system
all the agents might choose to play the strategy that performed best in the last round
instead of choosing their next strategy in proportion to how well it did last time. As
such, we cannot directly apply the results from replicator dynamics to multiagent
systems. However, the convergence of the systems’ dynamics to a Nash equilibrium
does illustrate the importance of this solution concept as an attractor of learning
agent’s dynamics.

Within replicator dynamics we can define a new solution concept inspired by the
“survival of the fittest” idea from evolution. An evolutionary stable strategy

evolutionary stable
strategy

(ess) is one which, as a population, defeats any small number of invading mutants.
That is, if everyone in the population plays that strategy then there is no way a
small number of mutants can invade the population and receive greater utility than
the agents there. More formally, we define it as

Definition 5.1 (Evolutionary Stable Strategy). An ess is an equilibrium strategy
that can overcome the presence of a small number of invaders. That is, if the equi-
librium strategy profile is ω and small number ε of invaders start playing ω′ then
ESS states that the existing population should get a higher payoff against the new
mixture (εω′ + (1− ε)ω) than the invaders.

It has further been shown that

Theorem 5.6 (ess is Steady State of Replicator Dynamics). ess is an asymptoti-
cally stable steady state of the replicator dynamics. However, the converse need not
be true—a stable state in the replicator dynamics does not need to be an ess (Taylor
and Jonker, 1978).

This means that ess is a further refinement of the solution concept provided by
the replicator dynamics. ess can be used when we need a very stable equilibrium
concept.

66 Chapter 5. Learning in Multiagent Systems

While these convergence theorems are very usefull, it is also the case that most
systems never converge to a fixed point. In these cases we need a way to visualize the
system dynamics. Since replicator dynamics is deterministic—we know exactly how
each population will evolve—we can plot a map showing how the population will
vary over time. Figure 5.5 shows a sample game, at the top left, and its visualization.
The triangle is known as a simplex plot and is used for games with three actions.

simplex plot
Every point inside the triangle represents a possible population. The point at the
bottom left is the population where all agents play a. Similarly, the top point is
where all agents play b. The point in the exact middle of the triangle represents
the population where 1/3 of the population play a, 1/3 play b, and 1/3 play c.
Each arrow starts at some population and ends at the next population that would
evolve from that one at the next time step. As can be seen, in this specific game
the population can get into cycles and never converge to a fixed point.

5.3.3 The AWESOME Algorithm

While fictitious play and replicator dynamics do not always converge to an equilib-
rium, one way we can guarantee that agents will converge to an equilibrium is by
having them calculate and play the same equilibrium strategy upon starting. Then,
if an agent notices that the others are not playing the agreed upon equilibrium strat-
egy it can play fictitious play instead. This is the basic idea of the AWESOME

AWESOME (Adapt When Everyone is Stationary, Otherwise Move to Equilibrium) algorithm
(Conitzer and Sandholm, 2003; Conitzer and Sandholm, 2006). That is, if the other
agents appear to be stationary the an awesome agent plays the best response to
their strategy. On the other hand, if they appear to be adapting then the agents
retreats to the equilibrium strategy.

The awesome algorithm starts by playing the equilibrium strategy πi and keep-
ing track of the actions each other player j has played. Every N rounds (an epoch)
it uses these actions to build a, possibly mixed, strategy sj for each player j. If sj
is the equilibrium strategy πj for all players j then the algorithm keeps playing the
equilibrium strategy. Otherwise, the algorithm plays the best response to sj . It is
easy to see that if all the other players are awesome players then they will play
their equilibrium strategies and will never diverge from it. If, on the other hand, an
awesome player is playing against some players who are, eventually, playing some
other fixed strategy then it will play a best response strategy against those fixed
strategies. Notice how the algorithm implements the reasoning behind the proof of
the folk theorem.

While the basic idea is simple, in order to prove that the algorithm will converge
some extra complexity had to be added to it. The algorithm, shown in figure 5.6,
has two Boolean state variables playing-equilibrium which is true when all other
agents played the equilibrium strategy during the last epoch and playing-stationary
which is true when all the other agents played a stationary strategy during the last
epoch. Also, playing-equilibrium-just-rejected is true when playing-equilibrium has
just been set to false during the last check. The algorithm plays the same strategy
φ for a whole epoch and then assesses the situation. If it turns out that either
the players are not stationary or not in equilibrium the algorithm makes a note of
this and changes its state. If the stationarity hypothesis is rejected then the whole
algorithm is re-started again (back to line 2).

In order for the algorithm to always converge, εe and εs must be decreased and
N must be increased over time using a schedule where

1. εs and εe decrease monotonically to 0,

2. N increases to infinity,

3.
∏
t←1,...,∞ 1−

P
i |Ai|

Nt(εts)2 > 0

4.
∏
t←1,...,∞ 1−

P
i |Ai|

Nt(εte)2 > 0.

5.4. Stochastic Games 67

awesome

1 π ← equilibrium strategy
2 repeat
3 playing-equilibrium ← true
4 playing-stationary ← true
5 playing-equilibrium-just-rejected ← false
6 φ← πi
7 t← 0
8 while playing-stationary
9 do play φ for N t times in a row (an epoch)

10 ∀j update sj given what they played in these N t rounds.
11 if playing-equilibrium
12 then if some player j has maxa(sj(a), πj(a)) > εe
13 then playing-equilibrium-just-rejected ← true
14 φ← random action
15 else if playing-equilibrium-just-rejected = false

and some j has maxa(sold
j (a), sj(a)) > εs

16 then playing-stationary ← false
17 playing-equilibrium-just-rejected ← false
18 b← arg maxa ui(a, s−i)
19 if ui(b, s−i) > ui(φ, s−i) + n|Ai|εt+1

s µ
20 then φ← b
21 ∀jsold

j ← sj
22 t← t+ 1

Figure 5.6: The awesome al-
gorithm. Here π is the equi-
librium strategy which has
been calculated before the al-
gorithm starts, n is the num-
ber of agents, |Ai| is the num-
ber of actions the agent can
take, µ is the difference be-
tween the player’s best and
worst possible utility values,
and sj(a) gives the probability
with which j will play action
a under strategy sj . Also, εe
and εs must be decreased and
N must be increased over time
using a valid schedule.

Given such a valid schedule, it can be shown that

Theorem 5.7 (awesome converges). With a valid schedule, the awesome algo-
rithm converges to best response if all the other players play fixed strategies and to
a Nash equilibrium if all the other players are awesome players.

Notice that the theorem says that, in self play, it converges to a Nash equilibrium
which might be different from the originally agreed upon equilibrium strategy π. For
example, say the agents agree on a mixed equilibrium strategy π but some of the
actions played in π constitute a pure Nash equilibrium. In this case it could happen
that the players end up, by chance, repeatedly playing the actions in the pure Nash
equilibrium during the first epoch. They might then decide that everybody else is
playing a stationary strategy which constitutes the pure Nash equilibrium. They
will then play the best response to that pure Nash which, we know, is the same
pure Nash equilibrium. As such, they will get stuck in that equilibrium.

The awesome algorithm is a simple way to force agents to converge to a Nash
equilibrium while not letting them be exploited by other agents that are not using
the same algorithm. In those cases where all agents are awesome agents then it
converges from the first step. However, it remains to be seen exactly how much it
can be exploited by clever opponents who know the equilibrium it wants to play
but would rather play something else.

5.4 Stochastic Games

In many multiagent applications the agents do not know the payoffs they will receive
for their actions. Instead, they must take random actions in order to first explore
the world so that they may then determine which actions lead them to the best
payoffs. That is, the agents inhabit a multiagent Markov decision problem.

68 Chapter 5. Learning in Multiagent Systems

Figure 5.7: Q-Learning al-
gorithm. Note that the .99

and .98 numbers are domain-
dependent and need to be

changed for each problem to
ensure that the algorithm

works. With ε ← 0 the al-
gorithm is still guaranteed
to work, but in practice it

might take longer to converge.

Q-learning

1 ∀s∀aQ(s, a)← 0; λ← 1; ε← 1
2 s← current state
3 if rand() < ε � Exploration rate
4 then a← random action
5 else a← arg maxaQ(s, a)
6 Take action a
7 Receive reward r
8 s′ ← current state
9 Q(s, a)← λ(r + γmaxa′ Q(s′, a′)) + (1− λ)Q(s, a)

10 λ← .99λ
11 ε← .98ε
12 goto 2

5.4.1 Reinforcement Learning

A very popular machine learning technique for solving these types of problems is
called reinforcement learning (Sutton and Barto, 1998), a specific instance of

reinforcement learning
it is known as Q-learning (Watkins and Dayan, 1992). Reinforcement learning

Q-learning assumes that the agent lives in a Markov process and receives a reward in certain
states. The goal is to find the right action to take in each state so as to maximize
the agent’s discounted future reward. That is, find the optimal policy.

More formally, we define the reinforcement learning problem as given by an mdp
(section 1.2) where the rewards are given on the edges instead of in the states. That
is, the reward function is r(st, at) → <. A reinforcement learning agent must find
the policy π∗ which maximizes his future discounted rewards (1.6).

The reinforcement learning problem can be solved using the Q-learning algo-
rithm shown in figure 5.7. Here λ is the learning rate and ε is the exploration

learning rate
rate. Both are always between 0 and 1. The learning rate guides how heavily we

exploration rate
consider new rewards versus old values we have learned. When λ = 1 the algorithm
completely re-writes the old Q(s, a) value while when λ = 0 is completely ignores
any new reward and instead uses the old Q(s, a). The exploration rate ensures that
we do not converge too quickly to a solution. When ε = 1 all the actions taken by
the agent are chosen randomly while when ε = 0 all the actions taken maximize the
Q values.

qlearning It has been shown that Q-learning will converge.

Theorem 5.8 (Q-learning Converges). Given that the learning and exploration
rates decrease slowly enough, Q-learning is guaranteed to converge to the optimal
policy (Watkins and Dayan, 1992) .

Q-learning differs from the value-iteration algorithm, from figure 1.2, in sev-
eral respects. In Q-learning the agent takes actions and learns at the same time.
Of course, the agent’s initial actions will be completely random as it has not learned
anything about its expected rewards but, as it takes more actions it learns to choose
better actions. Also, the value-iteration algorithm requires knowledge of the com-
plete transition and reward functions of the mdp while the Q-learning algorithm
explores the parts of the mdp that it needs. However, to be sure that it has found
the optimal policy, a Q-learning agent will need to visit every state and take every
action.

The convergence results of Q-learning are impressive, but they assume that
only one agent is learning. We are interested in multiagent systems where multiple
agents are learning. In these games the reward function is no longer a function
of the state and the agent’s actions, instead it is a function of the state and all
the agents’ actions. That is, one agent’s reward depends on the actions that other
agents take, as captured by the multiagent mdp we discussed in section 1.2.1. In

http://jmvidal.cse.sc.edu/netlogomas/qlearning.html

5.4. Stochastic Games 69

NashQ-learning

1 t← 0
2 s← current state
3 ∀s∈S∀j←1,...,n∀aj∈Aj

Qtj(s, a1, . . . , an)← 0
4 Choose action ati
5 s← s′

6 Observe rt1, . . . , r
t
n; at1, . . . , a

t
n; s′

7 for j ← 1, . . . , n
8 do Qt+1

j (s, a1, . . . , an)←
(1− λt)Qtj(s, a1, . . . , an) + λt(rtj + γNashQ t

j(s
′))

where NashQ t
j(s
′) = Qtj(s

′, π1(s′) · · ·πn(s′))
and π1(s′) · · ·πn(s′) are Nash EP calculated from Q values

9 t← t+ 1
10 goto 4

Figure 5.8: NashQ-learning
algorithm

these multiagent mdps it might be impossible for a Q-learning agent to converge
to an optimal policy.

As we set out to study these multiagent learning problems, the first thing we
need to do is choose a new equilibrium. Under the single agent problem definition we
were simply looking for the policy that maximizes the agent’s discounted rewards.
However, when we have multiple agents we might want to maximize the sum of
all agents’ discounted future rewards (social welfare), or we might choose a more
amenable (for convergence) equilibrium such as the Nash equilibrium point.

Nash equilibrium point
Definition 5.2 (Nash Equilibrium Point). A tuple of n policies (π∗1 , . . . , π

∗
n) such

that for all s ∈ S and i = 1, . . . , n,

∀πi∈Πivi(s, π
∗
1 , . . . π

∗
n) ≥ vi(s, π∗1 , . . . π∗i−1, πi, π

∗
i+1, . . . , π

∗
n),

where vi(s, π∗1 , . . . π
∗
n) is the total rewards (value) that agent i can expect to receive

starting from state s and assuming that agents use policies π∗1 , . . . π
∗
n.

The Nash equilibrium point is a set of policies such that no one agent i will
gain anything by changing its policy from its Nash equilibrium point strategies to
something else. As with the regular Nash equilibrium, it has been shown that the
Nash equilibrium point always exists.

Theorem 5.9 (Nash Equilibrium Point Exists). Every n-player discounted stochas-
tic game possesses at least one Nash equilibrium point in stationary strategies (Hu
and Wellman, 2003).

We can find the Nash equilibrium point in a system where all the agents use the
NashQ-learning algorithm shown in figure 5.8. In this algorithm each agent must

NashQ-learningkeep n Q-tables, one for each agent in the population. These tables are updated
in line 7 using a formula similar to the standard Q-learning update formula but
instead of using the Q values to determine future rewards it uses the NashQ tables.
These tables hold the Q value for every agent given that all agents play the same
Nash equilibrium policy on the multiagent mdp game induced by the current Q
values. That is, the algorithm assumes that the mdp is defined by the Q tables it
has and then calculates a Nash equilibrium point for this problem. We thus note
that at each step the each agent must calculate the Nash equilibrium point given
the current Q functions. This can be an extremely expensive computation—harder
than finding the Nash equilibrium for a game matrix.

Still, the NashQ-learning algorithm is guaranteed to converge as long as
enough time is given so that all state/action pairs are explored sufficiently, and
the following assumptions hold.

Assumption 5.1. There exists an adversarial equilibrium for the entire game and
for every game defined by the Q functions encountered during learning.

70 Chapter 5. Learning in Multiagent Systems

Figure 5.9: friend-or-foe al-
gorithm. There are k friends

with actions taken from
X1, . . . , Xk, and l foes with

actions taken from Y1, . . . , Yl.

friend-or-foe

1 t← 0
2 s0 ← current state
3 ∀s∈S∀aj∈AjQ

t
i(s, a1, . . . , an)← 0

4 Choose action ati
5 s← s′

6 Observe rt1, . . . , r
t
n; at1, . . . , a

t
n; s′

7 Qt+1
i (s, a1, . . . , an)←

(1− λt)Qti(s, a1, . . . , an) + λt(rti + γNashQ t
i(s
′))

where NashQ t
i(s
′) = maxπ∈Π(X1×···×Xk) minyi,...,yl∈Y1×···×Yl∑

x1,...,xk∈X1×···×Xk
π(x1) · · ·π(xk)Qi(s, x1, . . . , xk, y1, . . . yl)

and X are actions for i’s friends and Y are for the foes.
8 t← t+ 1
9 goto 4

Where an adversarial equilibrium is one where no agent has anything to lose
if the other agents change their policies. That is, if the other agents change their
policies from equilibrium then the agent’s expected reward will either stay the same
or increase.

Assumption 5.2. There exists a coordination equilibrium for the entire game and
for every game defined by the Q functions encountered during learning.

Where a coordination equilibrium is one where all the agents receive the highest
possible value. That is, the social welfare solution.

Under these assumptions it can be shown that NashQ-learning converges.

Theorem 5.10 (NashQ-learning Converges). Under assumptions 5.1 and 5.2
NashQ-learning converges to a Nash equilibrium as long as all the equilibria
encountered during the game are unique (Hu and Wellman, 2003).

These assumptions can be further relaxed by assuming that we can tell the agent
whether the opponent is a “friend”, in which case we are looking for a coordination
equilibrium, or a “foe”, in which case we are looking for an adversarial equilibrium
(Littman, 2001). With this additional information we no longer need to maintain a
Q table for each opponent and can achieve convergence with only one, expanded,
Q table. The algorithm is thus called the friend-or-foe algorithm and is shown
in figure 5.9.

In the friend-or-foe algorithm the agent i has k friends with action sets
friend-or-foe

represented by X1, . . . , Xk and l foes with action sets represented by Y1, . . . , Yl.
The algorithm implements the idea that i’s friends are assumed to work together to
maximize i’s value and i’s foes are working to minimize it. We can show that friend-
or-foe converges to a stable policy. However, in general these do not correspond
to a Nash equilibrium point. Still, we can show that it often converges to a Nash
equilibrium.

Theorem 5.11. foe-q learns values for a Nash equilibrium policy if the game
has an adversarial equilibrium and friend-q learns values for a Nash equilibrium
policy if the game has a coordination equilibrium. This is true regardless of opponent
behavior (Littman, 2001).

That is, if the game has one of the equilibria and we correctly classify all the other
agents as either friends or foes then the friend-or-foe algorithm is guaranteed to
converge.

friend-or-foe has several advantages over NashQ-learning. It is does not
require the learning of Q functions for each one of the other agents and it is easy to
implement as it does not require the calculation of a Nash equilibrium point at each

5.5. General Theories for Learning Agents 71

step. On the other hand, it does require us to know if the opponents are friends or
foes, that is, whether there exists a coordination or an adversarial equilibrium.

Neither algorithm deals with the problem of finding equilibria in cases without
either coordination or adversarial equilibria. Such cases are the most common and
most interesting as they require some degree of cooperation among otherwise selfish
agents.

5.5 General Theories for Learning Agents

The theory of learning in games provides the designer of multiagent systems with
many useful tools for determining the possible equilibrium points of a system. Un-
fortunately, most multiagent systems with learning agents do not converge to an
equilibrium. Designers often use learning agents because they do not know, at design
time, the specific circumstances that the agents will face at run time. If a designer
knew the best strategy, that is, the Nash equilibrium strategy, for his agent then he
would simply implement this strategy and avoid the complexities of implementing a
learning algorithm. Therefore, we will see a multiagent system with learning agents
when the designer cannot predict that an equilibrium solution will emerge.

The two main reasons for this inability to predict the equilibrium solution of
a system are the existence of unpredictable environmental changes that affect the
agents’ payoffs and the fact that on many systems an agent only has access to its
own set of payoffs—it does not know the payoffs of other agents. These two reasons
make it impossible for a designer to predict which equilibria, if any, the system
would converge to. However, the agents in the system are still playing a game for
which an equilibrium exists, even if the designer cannot predict it at design-time.
But, since the actual payoffs keep changing it is often the case that the agents are
constantly changing their strategy in order to accommodate the new payoffs.

As mentioned earlier, learning agents in a multiagent system are faced with a
moving target function problem (Vidal and Durfee, 1998b). That is, as the agents
change their behavior in an effort to maximize their utility their payoffs for those ac-
tions change, changing the expected utility of their behavior. The system will likely
have non-stationary dynamics—always changing in order to match the new goal.
While game theory tells us where the equilibrium points are, given that the payoffs
stay fixed, multiagent systems often never get to those points. A system designer
needs to know how changes in the design of the system and learning algorithms will
affect the time to convergence. This type of information can be determined by using
clri theory.

5.5.1 CLRI Model

The CLRI model (Vidal and Durfee, 2003) provides a method for analyzing a
CLRI modelsystem composed of learning agents and determining how an agent’s learning is

expected to affect the learning of other agents in the system. It assumes a system
where each agent has a decision function that governs its behavior as well as a target
function that describes the agent’s best possible behavior. The target function is
unknown to the agent. The goal of the agent’s learning is to have its decision function
be an exact duplicate of its target function. Of course, the target function keeps
changing as a result of other agents’ learning.

Formally, the clri model assumes that there is a fixed set of autonomous agents
in the system. The system can be described by a set of discrete states s ∈ S which
are presented to the agent with a probability dictated by the fixed probability
distribution D(S). Each agent i has a set of possible actions Ai where |Ai| ≥ 2.
Time is discrete and indexed by a variable t. At each time t all agents are presented
with a new s ∈ D(S), take a simultaneous action, and receive some payoff. The
scenario is similar to the one used by fictitious play except for the addition of state
s.

72 Chapter 5. Learning in Multiagent Systems

Figure 5.10: The moving
target function problem.

πti Πt
i

e(πti)

πt+1
i

Le
ar

n

Πt+1
iMove

e(π t+1i)

Each agent i’s behavior is defined by a policy πti(s) : S → A. When i learns at
time t that it is in state s it will take action πti(s). At any time there is an optimal
policy for each agent i, also known as its target function, which we represent as
Πt
i(s). Agent i’s learning algorithm will try to reduce the discrepancy between πi and

Πi by using the payoffs it receives for each action as clues as clues as to what it should
do given that it does not have direct access to Πi. The probability that an agent will
take a wrong action is given by its error e(πti) = Pr[πti(s) 6= Πt

i(s) | s ∈ D(S)]. As
other agents learn and change their decision function, i’s target function will also
change, leading to the moving target function problem, as depicted in figure 5.10.

An agent’s error is based on a fixed probability distribution over world states and
a Boolean matching between the decision and target functions. These constraints
are often too restrictive to properly model many multiagent systems. However, even
if the system being modeled does not completely obey these two constraints, the
use of the clri model in these cases still gives the designer valuable insight into
how changes in the design will affect the dynamics of the system. This practice is
akin to the use of Q-learning in non-Markovian games—while Q-learning is only
guaranteed to converge if the environment is Markovian, it can still perform well
on other domains.

The clri model allows a designer to understand the expected dynamics of the
system, regardless of what learning algorithm is used, by modeling the system using
four parameters: Change rate, Learning rate, Retention rate, and Impact (clri). A
designer can determine values for these parameters and then use the clri difference
equation to determine the expected behavior of the system.

The change rate (c) is the probability that an agent will change at least one of
its incorrect mappings in δt(w) for the new δt+1(w). It captures the rate at which
the agent’s learning algorithm tries to change its erroneous mappings. The learning
rate (l) is the probability that the agent changes an incorrect mapping to the correct
one. That is, the probability that δt+1(w) = ∆t(w), for all w. By definition, the
learning rate must be less than or equal to the change rate, i.e. l ≤ c. The retention
rate (r) represents the probability that the agent will retain its correct mapping.
That is, the probability that δt+1(w) = δt(w) given that δt(w) = ∆t(w).

clri defines a volatility term (v) to be the probability that the target function
∆ changes from time t to t + 1. That is, the probability that ∆t(w) 6= ∆t+1(w).
As one would expect, volatility captures the amount of change that the agent must
deal with. It can also be viewed as the speed of the target function in the moving
target function problem, with the learning and retention rates representing the speed
of the decision function. Since the volatility is a dynamic property of the system
(usually it can only be calculated by running the system) clri provides an impact
(Iij) measure. Iij represents the impact that i’s learning has on j’s target function.
Specifically, it is the probability that ∆t

j(w) will change given that δt+1
i (w) 6= δti(w).

Someone trying to build a multiagent system with learning agents would deter-
mine the appropriate values for c, l, r, and either v or I and then use

E[e(δt+1
i)] = 1− ri + vi

(
|Ai|ri − 1
|Ai| − 1

)
+ e(δti)

(
ri − li + vi

(
|Ai|(li − ri) + li − ci

|Ai| − 1

))
(5.6)

5.5. General Theories for Learning Agents 73

in order to determine the successive expected errors for a typical agent i. This
equation relies on a definition of volatility in terms of impact given by

∀w∈W vti = Pr[∆t+1
i (w) 6= ∆t

i(w)]

= 1−
∏

j∈N−i

(1− IjiPr[δt+1
j (w) 6= δtj(w)]), (5.7)

which makes the simplifying assumption that changes in agents’ decision functions
will not cancel each other out when calculating their impact on other agents. The
difference equation (5.6) cannot, under most circumstances, be collapsed into a
function of t so it must still be iterated over. On the other hand, a careful study
of the function and the reasoning behind the choice of the clri parameter leads to
an intuitive understanding of how changes in these parameters will be reflected in
the function and, therefore, the system. A knowledgeable designer can simply use
this added understanding to determine the expected behavior of his system under
various assumptions. An example of this approach is shown in (Brooks and Durfee,
2003).

For example, it is easy to see that an agent’s learning rate and the system’s
volatility together help to determine how fast, if ever, the agent will reach its target
function. A large learning rate means that an agent will change its decision function
to almost match the target function. Meanwhile, a low volatility means that the
target function will not move much, so it will be easy for the agent to match it.
Thus, if the agents have no impact on each other, that is, Iij = 0 for all i, j, then the
agents will learn their target function and the system will converge. As the impact
increases then it becomes more likely that the system will never converge.

Of course, this type of simple analysis ignores a common situation where the
agent’s high learning rate is coupled with a high impact on other agents’ target func-
tion making their volatility much higher. These agents might then have to increase
their learning rate and thereby increase the original agent’s volatility. Equation (5.6)
is most helpful in these type of feedback situations.

5.5.2 N-Level Agents

Another issue that arises when building learning agents is the choice of a modeling
level. A designer must decide whether his agent will learn to correlate actions with
rewards, or will try to learn to predict the expected actions of others and use these
predictions along with knowledge of the problem domain to determine its actions,
or will try to learn how other agents build models of other agents, etc. These choices
are usually referred to as n-level modeling agents—an idea first presented in the

n-level
recursive modeling method (Gmytrasiewicz and Durfee, 1995) (Gmytrasiewicz and
Durfee, 2001).

A 0-level agent is one that does not recognize the existence of other agents
0-levelin the world. It learns which action to take in each possible state of the world

because it receives a reward after its actions. The state is usually defined as a static
snapshot of the observable aspects of the agent’s environment. A 1-level agent

1-levelrecognizes that there are other agents in the world whose actions affect its payoff. It
also has some knowledge that tells it the utility it will receive given any set of joint
actions. This knowledge usually takes the form of a game matrix that only has utility
values for the agent. The 1-level agent observes the other agents’ actions and builds
probabilistic models of the other agents. It then uses these models to predict their
action probability distribution and uses these distributions to determine its best
possible action. A 2-level agent believes that all other agents are 1-level agents.

2-levelIt, therefore, builds models of their models of other agents based on the actions
it thinks they have seen others take. In essence, the 2-level agent applies the 1-
level algorithm to all other agents in an effort to predict their action probability
distribution and uses these distributions to determine its best possible actions. A 3-
level agent believes that all other agents are 2-level, an so on. Using these guidelines

74 Chapter 5. Learning in Multiagent Systems

we can determine that fictitious play (section 5.3.1) uses 1-level agents while the
replicator dynamics (section 5.3.2) uses 0-level agents.

These categorizations help us to determine the relative computational costs of
each approach and the machine-learning algorithms that are best suited for that
learning problem. 0-level is usually the easiest to implement since it only requires
the learning of one function and no additional knowledge. 1-level learning requires
us to build a model of every agent and can only be implemented if the agent has the
knowledge that tells it which action to take given the set of actions that others have
taken. This knowledge must be integrated into the agents. However, recent studies
in layered learning (Stone, 2000) have shown how some knowledge could be learned
in a “training” situation and then fixed into the agent so that other knowledge that
uses the first one can be learned, either at runtime or in another training situation.
In general, a change in the level that an agent operates on implies a change on the
learning problem and the knowledge built into the agent.

Studies with n-level agents have shown (Vidal and Durfee, 1998a) that an n-level
agent will perform better in a society full of (n-1)-level agents, and that the compu-
tational costs of increasing a level grow exponentially. Meanwhile, the utility gains
to the agent grow smaller as the agents in the system increase their level, within an
economic scenario. The reason is that an n-level agent is able to exploit the non-
equilibrium dynamics of a system composed of (n-1)-level agents. However, as the
agents increase their level the system reaches equilibrium faster so the advantages
of strategic thinking are reduced—it is best to play the equilibrium strategy and not
worry about what others might do. On the other hand, if all agents stopped learning
then it would be very easy for a new learning agent to take advantage of them. As
such, the research concludes that some of the agents should do some learning some
of the time in order to preserve the robustness of the system, even if this learning
does not have any direct results. That is, there appear to be decreasing marginal
returns for strategic thinking.

5.6 Collective Intelligence

We can also try to use machine learning as a way to automatically build multiagent
systems where each one of the agents learns to do what we want. For example,
imagine a factory floor with boxes that need to be moved and robots of different
abilities. Depending on the size and weight of the boxes, different robots, or combi-
nations of robots, are able to move them. We know that our goal is for all boxes to
be placed against the South wall. Then, rather than trying to come up with specific
plans or rules of behavior for each robot, we instead install a reinforcement learning
algorithm in each one of them and set them off to learn how best to coordinate. The
question we must then ask is: what is the reward function for each agent? As we saw
in the clri model, one agent’s actions can have an impact on another agent’s target
function thus making it hard, or even impossible, for the other agent to converge
in its learning. For example, if one robot keeps changing its behavior and moving
around randomly then it will be impossible for another agent to learn to predict
when they will both be in front of a large box so that they can move it together.

Collective intelligence (COIN) aims to formalize these ideas and determine what
COIN kind of rewards we should provide reinforcement-learning agents in order to achieve

a desired global behavior (Wolpert and Tumer, 1999). Specifically, we are given a
global utility function U(s,~a)→ < which tells us the value for every vector of actions
~a = {a1, a2, . . . , an} of the agents and state of the world s. The agents are assumed
to use some reinforcement learning algorithm, such as Q-learning. Our problem is
then to define the agents’ reward functions ui(s,~a) such that the agents will end
up with policies π∗i that maximize U . Notice that simply setting ui(s,~a) = U(s,~a)
for all i can lead to agents receiving an uninformative reward. For example, if a
confused agents throws itself against a wall while, at the same time, all the other
agents cooperate to move the box correctly then the confused agent will receive a
high reward and will thus likely continue to throw itself against the wall.

5.6. Collective Intelligence 75

Still, in general we do want to align each agent’s rewards with the global utility.
We can quantify this alignment by defining agent i’s preference over s,~a as

Pi(s,~a) =

∑
~a′∈ ~A Θ[ui(s,~a)− ui(s,~a′)]

| ~A|
, (5.8)

where Θ(x) is the Heaviside function which is 1 if x is greater than or equal to 0,
otherwise it is 0. Similarly, we can define the global preference function as

P (s,~a) =

∑
~a′∈ ~A Θ[U(s,~a)− U(s,~a′)]

| ~A|
. (5.9)

Both of these functions serve to rank the agents’, or the global, preferences over the
set of all possible states and actions vectors. For example, if a particular (s,~a) is
preferred over all others then P (s,~a) = 1.

In general, we might want an agent’s preferences to be similar to the system’s
preferences so that the agent’s learning mechanism will try to converge towards
the desired system’s preferences. A system where, for all agents i it is true that
Pi(s,~a) = P (s,~a) is called factored. These systems are nice in that they provide

factored
the correct incentives to the agents in all situations. Thus, factored systems are
more likely to converge to the set of policies that maximizes U .

It is possible that factored systems might not converge because agents’ action
might have an impact on each other thus changing each other’s target function. This
idea is captured within the coin framework as the opacity of ui(s,~a). Specifically,

opacity
we define the opacity Ωi for agent i as

Ωi(s,~a) =
∑
~a′∈ ~A

Pr[~a′]
|ui(s,~a)− ui(s,~a′−i,~ai)|
|ui(s,~a)− ui(s,~a−i,~a′i)|

. (5.10)

The opacity is zero when the agent’s rewards are the same regardless of the actions
taken by other, that is, when the other agents’ actions have no impact on what the
agent should do. On the other hand, the opacity gets larger as the other agents’
actions change the reward the agent will get. Just like with the clri impact, if the
opacity is zero for all states and action vectors then the multiagent learning problem
is reduced to the single-agent learning problem as the agents have no effect on each
other’s target function. More generally, a decrease in the opacity amounts to an
increase in the signal-to-noise ratio that the agent receives via its reward function.

Systems that are both factored and have zero opacity for all agents are extremely
rare, but would be easy to solve. Systems where the opacity is zero for all agents
amount to multiple learning problems that do not interfere with each other and are
easy to solve, but they are also very rare. Our goal can now be re-stated as that of
finding reward functions for each agent that have as low opacity as possible while
also being as highly factored as possible.

One solution coin proposes is the use of the wonderful life reward function
wonderful life

which gives each agent a reward proportional to its own contribution to the global
utility. It implements the same idea as the vcg payments (Chapter 8.4). Formally,
agent i’s wonderful life reward is given by

ui(s,~a) = U(s,~a)− U(s,~a−i), (5.11)

where the U(s,~a−i) represents the utility in state s when agent i does not exist and
all other agents take actions as in ~a−i. Notice that this equation can be derived
directly from the global utility function. Thus, it is applicable to any system where
we have a pre-defined utility function U . It has been shown that this reward func-
tion performs better than using ui = U and other seemingly appropriate reward
functions (Wolpert et al., 1999; Tumer and Wolpert, 2004).

Another solution is the aristocrat utility, which is defined as
aristocrat utility

ui(s,~a) = U(s,~a)−
∑
~a′∈ ~A

Pr[~a′]U(s,~a−i,~a′i), (5.12)

76 Chapter 5. Learning in Multiagent Systems

where Pr[~a′] is the probability that ~a′ happens. The aristocrat utility measures the
coin difference in the global utility between the agent’s action and its average or expected

action. It has been shown that this reward function also performs well, sometimes
better than the wonderful life utility (Wolpert and Tumer, 2001) .

5.7 Summary

We have seen how the theory of learning in games provides us with various equi-
librium solution concepts and often tells us when some of them will be reached by
simple learning models. On the other hand, we have argued that the reason learning
is used in a multiagent system is often because there is no known equilibrium or the
equilibrium point keeps changing due to outside forces. We have also shown how
the clri theory and n-level agents are attempts to characterize and predict, to a
limited degree, the dynamics of a system given some basic learning parameters.

5.8 Recent Advances

The GAMUT (Nudelman et al., 2004) software can produce game matrices from
thirty-five base classes of games. These matrices can be used to determine how well
learning algorithms perform under all possible game types and sizes.

Exercises

5.1 In general, which game matrices have cycles for fictitious play?

http://jmvidal.cse.sc.edu/netlogomas/coin.html

Chapter 6

Negotiation

A negotiation problem is one where multiple agents try to come to an agreement
or deal. Each agent is assumed to have a preference over all possible deals. The

deal
agents send messages to each other in the hope of finding a deal that all agents can
agree on. These agents face an interesting problem. They want to maximize their
own utility but they also face the risk of a break-down in negotiation, or expiration
of a deadline for agreement. As such, each agent must negotiate carefully, trading
off any utility it gains from a tentative against a possibly better deal or the risk of
a breakdown in negotiation.

decide whether the current deal is good enough or whether it should ask for
more and risk agreement failure.

Automated negotiation can be very useful in multiagent systems as it provides
a distributed method of aggregating distributed knowledge. That is, in a prob-
lem where each agent has different local knowledge negotiation can be an effective
method for finding the one global course of action which maximizes utility without
having to aggregate all local knowledge in a central location. In fact, the metaphor
of autonomous agents cooperating in this manner to solve a problem that cannot
be solved by any one agent, due to limited abilities or knowledge, was the central
metaphor from which the field of distributed artificial intelligence, later known as
multiagent systems, emerged (Davis and Smith, 1983). The metaphor is based on
the observation that teams of scientists, businesses, citizens, and others regularly
negotiate over future courses of action and the result of these negotiations can in-
corporate more knowledge than any one individual possesses (Surowiecki, 2005).
For example, in a NASA rover mission to Mars the various engineering teams and

See (Squyres, 2005) for the full

story on the MER mission to

Mars. An exciting read.science teams negotiate over what feature to include in the rover. The scientists
are concerned with having the proper equipment in Mars so that they can do good
science while the engineers try to ensure that everything will work as expected.
Often it is the case that one side does not understand exactly why the other wants
or rejects a particular feature but by negotiating with each other they arrive at a
rover that is engineered solidly enough to survive the trip to Mars and has enough
equipment to do useful science while there. Thus, negotiation results in the aggre-
gation of knowledge from multiple individuals in order to make decisions which are
better, for the whole, than if they were made by any one individual.

6.1 The Bargaining Problem

A specific version of the negotiation problem has been studied in game theory. It is
known as the bargaining problem (Nash, 1950). In the bargaining problem, we

bargaining problem
say that each agent i has a utility function ui defined over the set of all possible
deals ∆. That is, ui : ∆ → <. We also assume that there is a special deal δ−

which is the no-deal deal. Without loss of generality we will assume that for all
agents ui(δ−) = 0 so that the agents will prefer no deal than accepting any deal
with negative utility. The problem then is finding a protocol f which will lead the
agents to the best deal. But, as with all the game theory we have studied, it is not

See (Osborne and Rubinstein,

1999, Chapter 7) or (Osborne

and Rubinstein, 1990) for a

more extended introduction to

bargaining.

obvious which deal is the best one. Many solutions concepts have been proposed.
We provide an overview of them in the next sections.

77

78 Chapter 6. Negotiation

Figure 6.1: The dots rep-
resent possible deals. The
deals on the gray line are
Pareto optimal. The line

is the Pareto frontier. ui(δ)

uj(δ)

6.1.1 Axiomatic Solution Concepts

An axiomatic solution concept is one which we can formally describe and then
axiomatic

simply declare it to be our most desirable solution concept simply because we believe
it satisfies all the important requirements. There are many possible requirements we
might want to impose on a possible solution deal. The most obvious one is Pareto
optimality.

Definition 6.1 (Pareto optimal). A deal δ is Pareto optimal if there is no other
deal such that everyone prefers it over δ. That is, there is no δ′ such that

∀iui(δ′) > ui(δ).

This is an obvious requirement because if a deal is not Pareto optimal then that
means that there is some other deal which all of the agents like better. As such, it
does not make sense to use the non-Pareto deal when we could find this other deal
which everyone prefers.

With only two agents, i and j, we can visualize the set of Pareto-optimal deals by
using an xy-plot where the x and y coordinates are the utilities each agent receives
for a deal. Each deal then becomes a point in the graph, as seen in figure 6.1. The
pareto frontier is represented by the line shown in the upper-right which connects

pareto frontier
all the Pareto deals.

We might also want a solution that remains the same regardless of the magnitude
of an agent’s utility values.

Definition 6.2 (Independence of utility units). A negotiation protocol is indepen-
dent of utility units if when given U it chooses δ and when given U ′ = {(β1u1, . . . , βIuI) :
u ∈ U} it chooses δ′ where

∀i ui(δ′) = βiui(δ).

That is, if an agent in a protocol that is independent of utility units used to get
a utility of 10 from the result deal and now has multiplied its utility function by
5 then that agent will now get a utility of 50 from the new resulting deal. So, the
utilities the agents receive remain proportional under multiplication.

Definition 6.3 (Symmetry). A negotiation protocol is symmetric if the solution
remains the same as long as the set of utility functions U is the same, regardless of
which agent has which utility.

That is, if two agents swapped utility function then they also end up swapping
the utilities they get from the resulting deal. In other words, the specific agents do
not matter, the only thing that matters are the utility functions.

Definition 6.4 (Individual rationality). A deal δ is individually rational if

∀i ui(δ) ≥ ui(δ−).

6.1. The Bargaining Problem 79

So, a deal is individual rational if ui(δ) ≥ 0 since we will be assuming that
ui(δ−) = 0. That is, a deal is individually rational if all the agents prefer it over
not reaching an agreement.

Definition 6.5 (Independece of irrelavant alternatives). A negotiation protocol is
independent of irrelevant alternatives if it is true that when given the set of possible
deals ∆ it chooses δ and when given ∆′ ⊂ ∆ where δ ∈ ∆′ it again chooses δ,
assuming U stays constant.

That is, a protocol is independent of irrelevant alternative if the deal it chooses
does not change after we remove a deal that lost. Only removal of the winning deal
changes the deal the protocol chooses.

Given these requirements we can now consider various possible solutions to a
negotiation problem. In the egalitarian solution the gains from cooperation are

egalitarian solution
split equally among the agents. That is, the egalitarian deal is the one where all the
agents receive the same utility and the sum of their utilities is maximal, that is

δ = arg max
δ′∈E

∑
i

ui(δ′) (6.1)

where E is the set of all deals where all agents receive the same utility, namely

E = {δ | ∀i,jui(δ) = uj(δ)}. egalitarian n: one who

believes in the equality of all

people.We can find the egalitarian solution visually for the two agent case by simply
drawing the line y = x and finding the deal on this line that is farther away from
the origin, as seen in figure 6.2. Note that the egalitarian deal in this case is not
Pareto optimal. However, if we allowed all possible deals (the graph would be solid
black as every pair of x, y coordinates would represent a possible deal) then the
egalitarian deal would also be a Pareto deal. Specifically, it would be the point on
the y = x line which marks the intersection with the Pareto frontier. Also note that
the egalitarian deal does not satisfy the independence of utility units requirement
since it assumes the utility units for the agents are comparable, in fact, it assumes
that all agents’ utility functions use the same units.

A variation on the pure egalitarian deal is the egalitarian social welfare
egalitarian social

welfare
solution which is the deal that maximizes the utility received by the agent with the
lowest utility. That is, it is the deal δ that satisfies

δ = arg max
δ

min
i
ui(δ). (6.2)

The egalitarian social welfare solution is especially useful in scenarios where no
deal exists which provides all agents with the same utility since every problem is
guaranteed to have an egalitarian social welfare solution. However, the solution itself
can in some cases seem very un-egalitarian. For example, a deal where two agents
receive utilities of 10 and 100 respectively is the egalitarian social welfare solution
even when another deal exists which gives the agents 9 and 11 respectively.

The utilitarian solution is the deal that maximizes the sum of the utilities,
utilitarian solution

that is
δ = arg max

∑
i

ui(δ). (6.3)

The utilitarian deal is, by definition, a Pareto optimal deal. There might be more
than one utilitarian deals in the case of a tie. The utilitarian deal violates the
independence of utility units assumption as it also assumes utilities are comparable.

utilitarian n : someone who

believes that the value of a

thing depends on its utility.We can find the utilitarian deal visually for the two agent case by drawing a line
with slope of −1 and, starting at the top right, moving it perpendicular to y = x
until it intersects a deal. The first deals intersected by the line are utilitarian deals,
as shown in figure 6.3.

The utilitarian and egalitarian solutions both seem like fairly reasonable solu-
tions. Unfortunately, both violate the independence of utility units assumption. It

80 Chapter 6. Negotiation

Figure 6.2: Egalitarian and
egalitarian social welfare deals. ui(δ)

uj(δ)

y = x

Egalitarian deal

Egalitarian social welfare deal

Figure 6.3: Utilitarian deal.
The line y = b − x starts with
a very large b which is reduced
until the line intersects a deal. ui(δ)

uj(δ)

y = x

Utilitarian deal

was Nash who proposed a solution which does not violate this assumption. The
Nash bargaining solution is the deal that maximizes the product of the utilities.

Nash bargaining
solution

That is,
δ = arg max

δ′

∏
ui(δ′). (6.4)

The Nash solution is also Pareto efficient (Definition 6.1), independent of utility
units (Definition 6.2), symmetric (Definition 6.3), independent of irrelevant alter-
natives (Definition 6.5). In fact, it is the only solution that satisfies these four
requirements (Nash, 1950). This means that if we want a solution that satisfies
these four requirements then our only choice is the Nash bargaining solution.

Figure 6.4: Nash
bargaining deal. ui(δ)

uj(δ)

y = x

Nash bargaining deal

ui(δ) · uj(δ) = 1
ui(δ) · uj(δ) = 5

ui(δ) · uj(δ) = 10

6.1. The Bargaining Problem 81

ui(δ)

uj(δ)

u∗i

u∗i , u
∗
ju∗j

Kalai-Smorodinsky deal

Figure 6.5: Kalai-Smorodinsky
bargaining deal. We only show
deals on the Pareto frontier.

Figure 6.4 shows a visualization of the Nash bargaining deal. Each curve rep-
resents all pairs of utilities that have the same product, that is, the line y = c/x.
As we move northeast, following the line y = x, we cut across indifference curves of
monotonically higher products. As such, the last deal to intersect a curve is the one
which maximizes the product of the utilities, so it is the Nash bargaining solution.

Yet another possible solution is to find the deal that distributes the utility in
proportion to the maximum that the agent could get (Kalai and Smorodinsky,
1975). Specifically, let u∗i be the maximum utility that i could get from the set of
all deals in the Pareto frontier. That is, the utility that i would receive if he got
his best possible deal from the Pareto frontier. Then, find the deal that lies in the
line between the point δ− and the point (u∗i , u

∗
j). This solution is known as the

Kalai-Smorodinsky solution. If all deals are possible then this solution is Pareto
Kalai-Smorodinsky

solution
optimal. However, if there are only a finite set of possible deals then this solution
might not exist. That is, there might not be a point in the specified line. This is a
serious drawback to the use of the Kalai-Smorodinsky solution in a discrete setting.

The Kalai-Smorodinsky solution, like the Nash bargaining solution, is also in-
dependent of utility units requirement. On the other hand, it is not independent of
irrelevant alternatives.

There is no general agreement as to which one of these axiomatic solutions is
better. The social sciences try to develop experiments that will tell us which one of
the solutions, if any, is arrived at by humans engaged in negotiation. Others try to
justify some of these solutions as more fair than others. We, as multiagent designers,
will probably find that all of them will be useful at some point, depending on the
requirements of the system we are building.

6.1.2 Strategic Solution Concepts

Another way to think about what solution will be arrived at in a bargaining problem
is to formalize the bargaining process, assume rational agents, and then determine
their equilibrium strategies for their bargaining process. That is, define the solu-
tion concept to be the solution that is reached by automated rational agents in a
bargaining problem. This method does raise one large obstacle: we need to first
formally define a bargaining process that allows all the same “moves” as real-life
bargaining. If you have ever haggled over the price of an item then you know that
it is impossible to formalize all the possible moves of market-vendor. We need a
negotiation protocol that is simple enough to be formally analyzed but still allows
the agents to use most of their moves.

One such model is the Rubinstein’s alternating offers model (Rubinstein,
Rubinstein’s

alternating offers
1982). In this model two agents try to reach agreement on a deal. The agents can
take actions only at discrete time steps. In each time step one of the agents proposes
a deal δ to the other who either accepts it or rejects it. If the offer is rejected then

82 Chapter 6. Negotiation

we move to the next time step where the other agent gets to propose a deal. Once a
deal has been rejected it is considered void and cannot be accepted at a later time.
The agents, however, are always free to propose any deal and to accept or reject
any deal as they wish. We further assume that the agents know each other’s utility
functions.

The alternating offers models, as it stands, does not have a dominant strategy.
For example, imagine that the two agents are bargaining over how to divide a dollar.
Each agent wants to keep the whole dollar to itself and leave the other agent with
nothing. Under the basic alternating offers protocol the agents’ best strategy is
to keep proposing this deal to the other agent. That is, each agent keeps telling
the other one “I propose that I keep the whole dollar” and the other agent keeps
rejecting this proposal. This scenario is not very interesting.

In order to make it more interesting, we further assume that time is valuable
to the agents. That is, the agents’ utility for all possible deals is reduced as time
passes. For example, imagine that instead of haggling over a dollar the agents are
haggling over how to split an ice cream sundae which is slowly melting and the
agents hate melted ice cream. Formally, we say that agent i’s utility at time t for
deal δ is given by λtiui(δ) where λi is i’s discount factor, similarly the utility for j
is λtjuj(δ). Thus, the agents’ utility for every possible deal decreases monotonically
as a function of time with a discount factor given by λ. Note that if λi = 0 then the
agent must agree to a deal at time 0 since after that it will receive a utility of 0 for
any deal. Conversely, if λi = 1 then the agent can wait forever without any utility
loss.

Furthermore, lets assume that the agents’ utilities are linear and complementary.
Specifically, imagine that the deal δ is simply a number between 0 and 1 and repre-
sents the amount of utility an agent receives so that ui(δ) = δ and uj(δ) = 1− δ. In
this scenario, it can be shown that a unique subgame perfect equilibrium strategy
exists.

Theorem 6.1 (Alternating Offers Bargaining Strategy). The Rubinstein’s alternat-
ing offers game where the agents have complementary linear utilities has a unique
subgame perfect equilibrium strategy where

• agent i proposes a deal

δ∗i =
1− λj

1− λiλj
and accepts the offer δj from j only if ui(δj) ≤ ui(δ∗j),

• agent j proposes a deal

δ∗j =
1− λi

1− λiλj
and accepts the offer δi from i only if uj(δi) ≤ uj(δ∗i).

(Rubinstein, 1982; Muthoo, 1999).

We can understand how these deals are derived by noting that since both agents
have utilities that decrease with time the best deal will be reached in the first
step. That means that each agent must propose a deal that the other will accept.
Specifically, agent i must propose a deal δ∗i such that uj(δ∗i) = λjuj(δ∗j) because if
it proposes a deal that gives j lower utility then j will reject it and if it proposes a
deal that gives j higher utility then i is needlessly giving up some of its own utility.
Conversely, j must propose a deal δ∗j such that ui(δ∗j) = λiui(δ∗i). We thus have two
equations.

Since ui(δ) = δ and uj(δ) = 1−δ, we can replace these definitions into the above
equations to get

1− δ∗i = λj(1− δ∗j) (6.5)

δ∗j = λiδ
∗
i . (6.6)

6.2. Monotonic Concession Protocol 83

monotonic-concession

1 δi ← arg maxδ ui(δ)
2 Propose δi
3 Receive δj proposal
4 if ui(δj) ≥ ui(δi)
5 then Accept δj
6 else δi ← δ′i such that uj(δ′i) ≥ ε+ uj(δi) and ui(δ′i) ≥ ui(δ−)
7 goto 2

Figure 6.6: The monotonic
concession protocol.

Upon solving these two equations for δ∗i and δ∗j we get the equilibrium values
from Theorem 6.1. More generally, it has been shown that a unique subgame perfect
equilibrium exists even when the utility functions are not linear but are simply
monotonic in δ.

The theorem tells us that the best strategy for these agents is propose a bid on
the first time step which will be accepted by the other agent. This action makes
sense because we know that utilities only decrease with time so the best possible
deal will be had on the first time step. The value of the proposed deal, on the other
hand, is very interesting. Notice that the deal i proposes depends only on the agents’
discount factor, not on their utility values. The important thing is how fast each
agent loses utility over time. For example, notice that if λj = 0 then i will propose
δ∗i = 1. That is, i will propose to keep all the utility to himself. Agent j will accept
this proposal since he knows that given that his λj = 0 if he waits for the next time
step then he will receive utility of 0 in every possible deal.

Similar techniques have been used to show the existence of equilibrium in other
types of bargaining games (Kraus, 2001). These games are all alternating offer games
but assume different utility discounts such as a fixed loss utility function that is
reduced by a constant amount each time and an interest rate utility which models
the opportunity loss, among others. Depending on the type of utility discount and
the type of game, some of these games can be proven to have a unique perfect
equilibrium strategy that involves only one actions, others have multiple equilibria
and thus would require some other coordination method, and yet others can be
shown to be NP-complete in the time it takes to find the unique equilibrium. In
general, however, the technique used to solve these bargaining games is the same.

1. Formalize bargaining as a Rubinstein’s alternating offers games.

2. Generate extended-form game.

3. Determine equilibrium strategy for this game.

In practice, step 3 is often computationally intractable, at least for the general case
of the problem.

6.2 Monotonic Concession Protocol

The simplest negotiation protocol following the Rubinstein’s model of alternating
offers is the monotonic concession protocol. In this protocol the agents agree

monotonic concession
protocol

to always make a counter offer that is slightly better for the other agent than its
previous offer. Specifically, in monotonic concession the agents follow the algorithm
shown in figure 6.6.

Each agent starts by proposing the deal that is best for itself. The agent then
receives a similar proposal from the other agent. If the utility the agent receives
from the other’s proposal is bigger than the utility it gets from its own proposal
then it accepts it and negotiation ends. If no agreement was reached then the agent
must propose a deal that is at least an increase of ε in the other agent’s utility.
If neither agent makes a new proposal then there are no more messages sent and

84 Chapter 6. Negotiation

Figure 6.7: Monotonic con-
cession protocol visualization.

Both agents have linear utility
functions over the set of deals.
The superscripts indicate the

time so δ1i is i’s proposal at
time 1. At time 4 we have that
δ4i = δ4j so ui(δ

4
j) = ui(δ

4
i) and

the agents agree on this deal.

δ

Utility

ui(δ)

uj(δ)

δ1
i

ε δ2
i

ε δ3
i

ε

δ4
i

δ1
j

εδ2
j

εδ3
j

εδ4
j

negotiations fail, so they implicitly agree on the no-deal deal δ−. The monotonic
concession protocol makes it easy for the agents to verify that the other agent is
also obeying the protocol. Namely, if i ever receives a proposal whose utility is less
than a previous proposal then it knows that j is not following the protocol.

The protocol can be visualized as in figure 6.7. Here we see a simple example
with linear utility functions where the agents reach an agreement (δ4) after four
time steps. Notice that the agreement reached is not the point at which the lines
intersect. The monotonic concession protocol is not guaranteed to arrive at any
particular axiomatic solution concept. All that it guarantees is that it will stop.

Monotonic concession has several drawbacks. It can be very slow to converge.
Convergence time is dictated by the number of possible deals, which is usually very
large, and the value of ε. It is also impossible to implement this algorithm if the
agents do not know the other agents’ utility function. In practice, it is rare for an

A common workaround is to

assume its a zero-sum game

and use the agent’s own utility

function.
agent to know its opponent’s utility function. Finally, the monotonic concession
protocol has a tricky last step. Namely, the two agents could make simultaneous
offers where each one ends up preferring the other agent’s offer to the one it just
sent. This is a problem as both of them now want to accept different offers. This
can be solved by forcing the agents to take turns. But, if we did that then neither
will want to go first as the agent that goes first will end up with a slightly worse
deal.

6.2.1 The Zeuthen Strategy

The monotonic concession protocol we presented implements a simplistic strategy
for the agent: always concede at least ε to the other agent. However, if an agent
knows that the other one will always concede then it might choose to not con-
cede at all. Smarter agents will examine their opponent’s behavior and concede in
proportion to how much they are conceding.

This idea is formalized in the Zeuthen strategy for the monotonic concession
Zeuthen strategy protocol. We start by defining the willingness to risk a breakdown in negotiations

to be

riski =
ui(δi)− ui(δj)

ui(δi)
. (6.7)

The agent can then calculate the risks for both agents. The Zeuthen strategy tells
us that the agent with the smallest risk should concede just enough so that it does
not have to concede again in the next time step. That is, the agent that has the least

6.2. Monotonic Concession Protocol 85

zeuthen-monotonic-concession

1 δi ← arg maxδ ui(δ)
2 Propose δi
3 Receive δj proposal
4 if ui(δj) ≥ ui(δi)
5 then Accept δj
6 riski ← ui(δi)−ui(δj)

ui(δi)

7 riskj ← uj(δj)−uj(δi)
uj(δj)

8 if riski < riskj
9 then δi ← δ′i such that riski(δ′i) > riskj(δ′j)

10 goto 2
11 goto 3

Figure 6.8: The monotonic
concession protocol using the
Zeuthen strategy.

δδ

Utility

ui(δ) = 5− δ

uj(δ) = 2
3δ

δ0
i = 0 δ0

j = 6

δ1
j = 4.9 Figure 6.9: Visualization of

the Zeuthen strategy at work.
The initial proposals are δ0i =
0 and δ0j = 6.

to lose by conceding should concede. More formally, we define the new protocol as
shown in figure 6.8.

Figure 6.9 shows a graphical representation of the first step in a Zeuthen nego-
tiation. After the initial proposal the agents calculate their risks to be

risk0
i =

5− (−1)
5

=
6
5

and
risk0

j =
4− 0

4
= 1.

Since j has a lower risk it must concede. The new deal must be such that j will not
be forced to concede again. That is, it must insure that

riski =
5− (5− δj)

5
<

2
3δj − 0

2
3δj

= riskj

which simplifies to δj < 5. As such, j can pick any deal δ less than 5. In the figure
the agent chooses δ1

j = 4.9.
The Zeuthen strategy is guaranteed to terminate and the agreement it reaches

upon termination is guaranteed to be individually rational and Pareto optimal.
Furthermore, it has been shown that two agents using the Zeuthen strategy will
converge to a Nash bargaining solution.

Theorem 6.2 (Zeuthen converges to Nash solution). If both agents use the Zeuthen
strategy they will converge to a Nash bargaining solution deal, that is, a deal that
maximizes the product of the utilities (Harsanyi, 1965).

86 Chapter 6. Negotiation

Figure 6.10: The one step
negotiation protocol (Rosen-

schein and Zlotkin, 1994).

one-step-negotiation

1 E ← {δ | ∀δ′ui(δ)uj(δ) ≥ ui(δ′)uj(δ′)}
2 δi ← arg maxδ∈E ui(δ)
3 Propose δi
4 Receive δj
5 if ui(δj)uj(δj) < ui(δi)uj(δi)
6 then Report error, j is not following strategy.
7 Coordinate with j to choose randomly between δi and δj .

The proof of the theorem shows how the maximum of both agents’ utilities
monotonically increases until the protocol reaches an agreement. As such, if there
is any other agreement that has higher utility than the one they agreed upon then
that agreement would have been proposed in the negotiation. Therefore, there can
be no deal with higher utility for any agent than the one they agreed on.

A problem with the Zeuthen strategy might arise in the last step if the agents’
risks are exactly the same. Specifically, if both agents realize that their risks are the
same and that the next proposal that either of them makes will be accepted by their
opponent then both agents will want to wait for the other agent to concede. This
is an example of the game of chicken. As such, selfish agents should play the Nash
equilibrium strategy which, in this case, is a mixed strategy. Since it is a mixed
strategy it means that there remains a possibility for both of them to decide to
wait for the other one, thereby breaking down the negotiations when a solution was
possible.

The Zeuthen strategy is also attractive because, when combined with the mixed
Nash strategy we described, it is in a Nash equilibrium. That is, if one agent declares
that it will be using the Zeuthen strategy then the other agent has nothing to gain
by using any other negotiation strategy. As such, and agent that publicly states
that it will be using the Zeuthen strategy can expect that every agent it negotiates
with will also use the Zeuthen strategy.

6.2.2 One-Step Protocol

Once we have a multi-step protocol that (usually) reaches a particular solution, we
immediately think about the possibility of skipping all those intermediate steps and
jumping right to the final agreement. Specifically, we could define a protocol that
asks both agents to send a proposal. Each agent then has two proposals: the one
it made and the one it received. The agents must then accept the proposal that
maximizes the product of the agents’ utilities. If there is a tie then they coordinate
and choose one of them at random.

Given the rules established by this protocol, an agent’s best strategy is to find
of the deals that maximize the product of the utilities and then, from these deals,
propose the one that is best for the agent. The agent’s algorithm for this one-
step negotiation protocol is shown in figure 6.10. The strategy implemented by

one-step negotiation
this algorithm is a Nash equilibrium. That is, if one agent decides to implement
this algorithm then the other agent’s best strategy is to also implement the same
algorithm. Thus, when using perfectly rational agents it is always more efficient to
use one-step negotiation rather than the more long winded monotonic concession
protocol.

6.3 Negotiation as Distributed Search

If we take a step back and look at the bargaining problem, we realize that the
problem of finding a chosen solution deal is in effect a distributed search problem.
That is, via their negotiations the agents are effectively searching for a specific
solution. A simple and natural way to carry out this search is by starting with some

6.4. Ad-hoc Negotiation Strategies 87

ui(δ)

uj(δ)

δ0

Deals that Pareto dominate δ0

δ1

Figure 6.11: Hill-climbing on
the Pareto landscape. The
quadrant to the top and right
of δ0 contains all the deals
that dominate δ0, similarly
for δ1. There are no deals that
dominate δ1 and yet it is not
the social welfare or Nash bar-
gaining solution.

initial deal and at each time step moving to another deal. The process is repeated
until there is no other deal which the agents can agree on.

For example, figure 6.11 shows an initial deal δ0 along with all the other possible
deals for a negotiation problem. Any deal that is above and to the right of δ0, as
delineated by the gray lines, dominates δ0. This means that any deal in this quadrant
is preferred by all the agents. Thus, we can expect selfish agents to cheerfully accept
any one of those deals. A simple hill-climbing search process will continue moving
in this up-and-right direction.

However, the search might get stuck in a local optima. For example, suppose
that we go directly from δ0 to δ1 as shown in the figure. This new deal is not
dominated by any other deal, thus our simple hill-climbing algorithm is now stuck
at that deal. Notice also that this deal is not the social welfare maximizing deal nor
is it the Nash bargaining deal. Thus, simple hill-climbing among selfish agents can
lead us to sub-optimal solutions.

In real applications this search problem is further compounded by the fact that it
is often impossible to move directly from any one deal to any other deal because the
number of possible deals is simply too large to consider or there are other external
limitations imposed on the agents. That is, most applications overlay an undirected
graph to the bargaining problem. In this graph the nodes represent the possible
deals and an edge between two nodes denotes the fact that it is possible to move
between those two deals. Given such a graph, it is possible that the agents would
find themselves in one deal that is pareto dominated by a lot of other deals but
which are unreachable in one step because there is no edge between those deals and
the current deal. Thus, we have even more local optima.

Researchers have tried to circumvent this problem of local optima in bargaining
via a number of different methods, as we shall see in the next few sections.

6.4 Ad-hoc Negotiation Strategies

Deployed multiagent negotiation systems, such as ADEPT (Faratin et al., 1998;
ADEPTBinmore and Vulkan, 1999), have implemented agents with ad-hoc negotiation

strategies. In adept, a handful of selected negotiation tactics were tested against
tactics

each other to determine how they fared against each other. The basic negotiation
model used was an alternating offers model with time discounts. The tactics the
agents could use included: a linear tactic that concedes a fixed amount each time,
a conceder tactic that concedes large amounts of utility on earlier time steps, and
an impatient tactic which conceded very little at first and requested a lot. We can
think of each one of these tactics as stylized versions of the negotiation strategies
people might use in a negotiation.

This ad-hoc approach is often used by multiagent developers who need to build
a negotiating multiagent system which achieves a good-enough solution and where

88 Chapter 6. Negotiation

all the agents are owned by the same party and, thus, do not need to behave truly
selfishly. It allows us to use somewhat selfish agents that encapsulate some of the
system’s requirements and then use the negotiation protocol to aggregate these
individual selfish interests into a global solution which, although not guaranteed to
be the utilitarian solutions, can nonetheless be shown via experimentation to be a
good-enough solutions. Nonetheless, we must always remember that these systems
are not to be opened up to outside competition. Once we know the other agents’
ad-hoc tactics, it is generally very easy to implement an agent that can defeat those
tactics, usually at the cost of a much lower system utility. That is, one renegade
agent can easily bring down a system of ad hoc negotiating agents, unless the system
has been shown to be at an evolutionary stable equilibrium.

6.5 The Task Allocation Problem

A common problem in multiagent systems is deciding how to re-allocate a set of
tasks among a set of agents. This is known as the task allocation problem. In

task allocation problem
this problem there is a set of tasks T , a set of agents, and a cost function ci : s→ <
which tells us the cost that agent i incurs in carrying out tasks s ⊆ T . In some
simplified versions of the problem we assume that all agents share the same cost
function. Each agent starts out with a set of tasks such that all tasks are distributed
amongst all agents. We can think of this initial allocation as δ− since, if negotiations
break down then each agent is responsible for the tasks it was originally assigned.
Similarly, every allocation of tasks to agents is a possible deal δ where si(δ) is the
set of tasks allocated to i under deal δ. The problem we then face is how to design
a negotiation protocol such that the agents can negotiate task re-allocations and
arrive at a final re-allocation of the tasks that is one of the axiomatic solution
concepts, such as the utilitarian deal.

An example of this type of problem is the postman problem in which a set of
postman problem

postmen are placed around a city each with a bag of letters that must be delivered.
A postman prefers to have all his letters with delivery addresses that are very close
to each other so as to minimize his delivery costs. The postmen can negotiate with
each other in order to make this happen. That is, a postman can trade some of
its letters with another postman. In this example the tasks are the letters to be
delivered and the cost function is the distance traveled to deliver a set of letters.
Different cost functions arise when the postmen have different final destinations, for
example, if they are required to go to their respective homes after delivering all the
letters, or if they prefer certain areas of town, etc.

Once we are given task allocation problem we must then decide how the agents
will exchange tasks. The simplest method is for agents to pair up and exchange a
single task. This means that not all deals are directly accessible from other deals
since, for example, we can’t go from the deal where j does 2 tasks and i does
nothing to the deal where i does 2 tasks and j does nothing in one step. We can
represent this constraint graphically by drawing an edge between every pair of deals
that are reachable from one another by the exchange of a single task. An example
of such a graph is shown in figure 6.12. The table in this figure shows the tasks
assignments that each deal represents and the costs that each one of the agents
incurs for carrying out various subsets of tasks. We let the utility to the agent be 8
minus the cost of carrying out the tasks in order to have positive utility numbers.
Utility is often simply the negative of the cost so these two are used interchangeably.
The graph shows all the possible deals as points and the edges connect deals that
can be reached from one another by moving a single task between agents.

Note that the example in figure 6.12 has a Pareto frontier that consists of deals
δ1, δ2, δ7 and δ8. Thus, if we were to apply our simple hill-climbing search strategy
where we always move to a neighboring dominant deal we are guaranteed to always
end up stuck at one of these four deals. In terms of the task allocation problem
this greedy search corresponds to the agents exchanging a task only when both of
them are better off from the exchange. In other words, if your solution to a task

6.5. The Task Allocation Problem 89

δ si(δ) sj(δ) ci(δ) cj(δ) ui(δ) = 8− ci(δ) uj(δ) = 8− cj(δ)
δ1 ∅ {t1, t2, t3} 0 8 8 0
δ2 {t1} {t2, t3} 1 4 7 4
δ3 {t2} {t1, t3} 2 5 6 3
δ4 {t3} {t2, t3} 4 7 4 1
δ5 {t2, t3} {t1} 6 4 2 4
δ6 {t1, t3} {t2} 5 3 3 5
δ7 {t1, t2} {t3} 3 1 5 7
δ8 {t1, t2, t3} ∅ 7 0 1 8

ui(δ)

uj(δ)

δ1

δ2

δ3

δ4

δ5

δ6

δ7

δ8

Figure 6.12: An example task
allocation problem is shown
in the table and its graphical
representation as a bargaining
problem is shown in the graph.
The edges on the graph con-
nect deals that can be reached
by moving a single task be-
tween the agents. si(δ) is the
set of tasks i has under deal δ.

allocation problem is to have the agents exchange a single task at a time only when
both agents have a utility gain from the transaction then, eventually, the system
will converge to an allocation that is on the Pareto frontier. Of course, this means
that, for example, you might end up at deal δ8 from figure 6.12 which might not be
so desirable. A more desirable deal might be δ7 which is the utilitarian solution for
this problem.

6.5.1 Payments

One possible way to allow the agents to find deals that are closer to the utilitarian
deal is by allowing them to use monetary payments. For example, agent i might

monetary payments
convince j to take a deal that gives j less utility if i can sweeten the deal by giving
j some money to take that deal. This basic idea was implemented in the contract
net protocol (Smith, 1981; Davis and Smith, 1983). In contract net each agent

contract net protocol
takes the roles of either a contractor or contractee. The contractor has a task that it
wants someone else to perform. The contractor is also willing to pay to get that task
done. In the protocol, the contractor first announces that it has a task available by
broadcasting a call for bids. All agents receive this call for bids and, if they want,
reply to the contractor telling him how much they charge for performing the task.
The contractor then chooses one of these bids, assigns the task to the appropriate
agent and pays him the requested amount.

For example, given the current task allocation δ agent i might find that one

90 Chapter 6. Negotiation

Figure 6.13: Deal δ1 is turned
into an infinite number of
deals, represented by the

line that intersects δ1, with
the use of payments. Some
of those new deals Pareto
dominate δ0, as shown by

the thicker part of the line. ui(δ)

uj(δ)

δ0

δ1

New dominant deals

of his current tasks t ∈ si(δ) costs him a lot. That is, ci(si(δ)) − ci(si(δ) − t) is
a large number. In this case i will be willing to pay up to ci(si(δ)) − ci(si(δ) − t)
in order to have some other agent perform t—the agent will pay up to the utility
he will gain from losing the task, any more than that does not make sense as the
agent can simply do the task himself. Similarly, any other agent j will be willing
to perform t as long as it gets paid an amount that is at least equal to any cost
increase he will endure by performing the task, that is, the payment must be at least
cj(sj(δ))− cj(sj(δ) + t). Note that in the general case some of these numbers could
be negative, for example, an agent could actually have lower costs from performing
an extra task. However, these sub-additive cost functions are rare in practice.

The use of monetary payments has the effect of turning one deal into an infi-
nite number of deals: the original deal and the infinite number of payments, from
−∞ to ∞ that can be made between the agents. Figure 6.13 shows a graphical
representation of this process. Here we see deal δ1 transformed into the set of deals
represented by the line going thru δ1. The figure also shows us how this transforma-
tion creates new deals that dominate another existing deal δ0. Thus, if the system
was in δ0 and we were doing hill-climbing then we would be stuck there as δ1 does
not dominate δ0. But, if we used the contract net then agent j could make a pay-
ment to i, along with the task transfer, which would give i a higher total utility.
This new task allocation plus payment is a deal that lies within the thick area of
the line that intersects δ1. Thus, contract net allows us to reach a task allocation
that is the utilitarian solution. Unfortunately, the addition of payments does not
guarantee that we will always reach the utilitarian solution, this depends on the
particular characteristics of the cost function.

One type of cost functions that have been found to be easy to search over are
additive cost functions where the cost of doing a set of tasks is always equal to the
sum of the costs of doing each task individually.

Definition 6.6. A function c(s) is an additive cost function if for all s ⊆ T it
additive cost function

is true that
c(s) =

∑
t∈s

c(t).

In these scenarios it has been shown that the contract net protocol, or any other
protocol that uses payments and always moves to dominant deals, will eventually
converge to the utilitarian social welfare solution.

Theorem 6.3. In a task allocation problem with an additive cost function where
we only allow exchange of one task at a time, any protocol that allows payments and
always moves to dominant deals will eventually converge to the utilitarian solution
(Endriss et al., 2006).

For example, in figure 6.12 we saw how simple hill climbing would lead us to
converge into one of the deals on the Pareto frontier but not necessarily the util-

6.5. The Task Allocation Problem 91

ui(δ)

uj(δ)

δ1

δ2

δ7

δ8

Figure 6.14: Monetary pay-
ments with an additive cost
function. The deals on the
Pareto frontier expand into an
infinite set of deals represented
by lines intersecting the origi-
nal deals. The utilitarian deal
δ7 is the only one not domi-
nated by any other deal.

itarian solution (δ7). Figure 6.14 reproduces this problem but this time we only
show the deals on the Pareto frontier along with all the new deals generated by
using payments. The new deals are represented by the parallel lines which intersect
each of the original deals. It is easy to confirm that every non-utilitarian domi-
nant deal (that is, δ1, δ2 and δ8) is dominated by a new deal. Thus, if we continue
moving to successively dominant deals we are guaranteed to end up at δ7 which is
the utilitarian deal, and is the only deal not dominated by any other deals. The
proof of Theorem 6.3 follows the same line of thought; it shows that any deal (with
payments) that is not dominated by some other deal must be the utilitarian social
welfare solution.

If we allow arbitrary cost functions then there is very little we can say about
which solution a hill-climbing protocol will reach, except for one scenario. In the
case where every pair of deals is connected by an edge, we can get to any deal from
every other deal in one step, imagine that the graph in figure 6.12 fully connected,
then using payments guarantees we will converge to the utilitarian social welfare
(Sandholm, 1997; Sandholm, 1998; Andersson and Sandholm, 1998). We can easily
verify this by looking again at figure 6.14. Here we can see how each deal is converted
into a line of slope −1 and the utilitarian deal will always be the one with the
line that is furthest to the top right. Thus, any protocol that successively moves
via dominant deals (hill-climbing towards the top right) will always arrive at the
utilitarian solution because, as we assumed, every deal is always reachable from
every other deal. We can directly connect every deal to every other deal by using
a very flexible contracting language, such as OCSM contracts which allows all

OCSM contractspossible task transfer combinations.
Unfortunately, being able to move from every deal to every other deal in one

step means that the agents will need to consider a vast number of possible deals at
each time step. Thus, this approach merely replaces one intractable problem with
another. In general, what we want is to limit the deal accessibility—the number
of edges in the graph—such that there is a manageable number of deals accessible
from every deal and there are few local optima where a hill-climbing negotiation
could get stuck. We currently lack any general tools for achieving this result but,
for any specific problem it is likely that a good multiagent designer can engineer a
viable solution.

92 Chapter 6. Negotiation

Figure 6.15: Lying by task
creation example. The top

table shows the original util-
ity values, where δ1 is the
Nash bargaining solution.

The bottom table shows the
values after agent i creates

phony task t2. Here, δ4 is the
Nash bargaining solution.

δ si(δ) sj(δ) ui(δ) uj(δ)

δ1 ∅ {t1} 1 3
δ2 {t1} ∅ 2 1

δ si(δ) sj(δ) ui(δ) uj(δ)

δ1 ∅ {t1, t2} 1 5
δ2 {t1} {t2} 2 3
δ3 {t2} {t1} 2 3
δ4 {t1, t2} ∅ 8 1

6.5.2 Lying About Tasks

In some cases it might be worthwhile for an agent to hide from other agents some of
the tasks it has to perform, or to make up tasks and tell others that it has perform
them, or to make up these tasks and, if someone else offers to perform the phony
tasks then actually create the new tasks. All these methods of cheating result in
the modification of the set of existing deals. For example, if an agent creates a new
task then we now have to consider all the possible ways in which the new bigger
set of tasks can be distributed among the agents. If an agent hides a task from the
agents then the system has fewer possible allocations to consider. We can then ask
the question, when is it in an agent’s best interest to lie?

That is the question asked in Rules of Encounter (Rosenschein and Zlotkin,
1994). In it, the authors assume that the agents will use a bargaining protocol
which will arrive at the Nash bargaining solution, presumably by either using al-
ternating offers with the Zeuthen strategy or the one-step-negotiation protocol
from figure 6.10. Once an agent knows that the final agreement deal will be the
Nash bargaining solution then all it has to do is check each possible lie to see if the
solution reached when it tells that lie gives him a higher utility than he would have
received by telling the truth. Fortunately for the agent, and unfortunately for us, it
has been shown that such lies do generally exist and will benefit the agent.

Figure 6.15 shows an example where an agent has an incentive to create a phony
task. The table on the left shows the initial utility values for a simple game with
only one task. In this game the Nash bargaining solution is δ1 in which i does not
perform any task and receives a utility of 1. Noticing that it would get a utility of 2
if it did perform t1, i decides to create a phony task t2 whose utility values are given
on the table. In this new game the Nash bargaining solution is δ4 which gives both
tasks to agent i. Thus, by creating this task i was able to get a utility of 2 instead
of the original 1 by getting t1 allocated to itself. That is, since t2 was assigned to
i, the agent does not have to worry about perform this task nor does he have to
worry about other agents trying to perform a task he made up. Thus, it can lie and
get away with it.

6.5.3 Contracts

In our discussion of payments we have thus far assumed that if one agent says that
he will pay another agent to perform some tasks then both of them will abide by
that contract. The tasks will be performed and the money will be paid. Of course,
things are not so simple for real applications. Specifically, in a dynamic environment
an agent that is given a set of tasks to perform might find that right after he agrees
to perform the tasks a new deal appears which will give him much higher utility.
In this case the agent will be tempted to de-commit on his current contract and
establish a new one. Similarly, it is possible that right after an agent agrees to pay
a certain amount to get some tasks done that a new agent appears which is willing
to perform those tasks for less. Again, the agent will be tempted to de-commit on
his payment.

For example, in figure 6.16 the agents start out with δ0. Lets say that in this

6.5. The Task Allocation Problem 93

ui(δ)

uj(δ)

δ0

δ1 : i does task and j and pays nothing.

δ2 : i does task and j and pays $2.

δ3 : i does nothing and j pays $2.

δ4 : i does task and j pays penalty of $1.

δ5 : i does nothing pays penalty of $1, j pays $2. Figure 6.16: Leveled commit-
ment contracts illustration.
The agents start at δ0 where
j is performing the one avail-
able task and i is idle. δ1 and
δ3 are the two de-commitment
contracts. When we add a de-
commitment penalty of 1 then
these two become δ4 and δ5

respectively.

scenario there is only one task to perform and, under δ0, agent j is going to perform
it. Both agents get a utility of 2 under this initial deal. However, j notices that if
he can give the task to i then they will be at δ1 which gives j a utility of 4 and
i a utility of 1. Thus, j reasons that he could pay i the amount of $2 to perform
the task. This new deal is δ2 which gives both agents a utility of 3. δ2 dominates
δ0 and will thus be accepted by both. The only problem in moving from δ0 to δ2 is
the risks involved with this deal. If j fails to pay i then we are at δ1 where i loses
a utility of 1 as compared to δ0. Similarly, if j pays but i fails to perform the task
then j has to perform the task and we end up at δ3 where j has lost 2 in utility.

A simple way to fix this problem is to enforce all contracts. If the agents agree
to a deal then each one must deliver on that promise. However, there are cases
when this might be impossible or undesirable. Specifically, in dynamic environments
where new opportunities can appear at any time allowing agents to de-commit might
increase social welfare, in other applications the cost of policing the systems might
be higher than the gains from having enforcable rules. In these cases we might wish
to use more sophisticated contracts.

One solution is to use leveled commitment contracts (Sandholm and Lesser,
leveled commitment

contracts
2002; Sandholm and Zhou, 2002) which have the added stipulation that if an agent
breaks the contract then it must pay a penalty. For example, we could add a penalty
of $1 to anyone who breaks the contract in figure 6.16. By adding this penalty we
have that, instead of the de-commitments leading us to δ1 and δ3 they will lead
us to δ4 and δ5. Note how these new deals are closer to δ0 thus reducing the risks
of loss for both agents. Specifically, if j were to de-commit and fail to pay the $2,
he must still pay the $1 penalty to i so i’s final utility is 2 even if j de-commits,
the same as ui(δ0). This means that there is no risk for i to take this contract.
Similarly, if i de-commits and fails to do the task then we end up at δ4 because
i pays a penalty of $1 to j who must perform the task. In this case, j’s utility is
1 which is greater than uj(δ3) = 0 so j has reduced his risk. Such risk reduction
means that in dynamic situations where the agents are constantly trying to tradeoff
current income against future possibilities—deciding whether or not to wait for a
better deal to come along—the agents will be able to accept more contracts and,
hopefully, the system will perform better.

Note that the de-commitment decision itself is not obvious, even when the agent
receives a better offer from somewhere else. For example, say that after agreeing
to δ2 agent i receives another offer that will give him a utility of 10 but in order
to perform that task he must de-commit on the task from j. Clearly i wants to
de-commit but, a strategic agent i would also realize that there is a change that j
will de-commit first. If j de-commits then i gets the penalty payment from j and

94 Chapter 6. Negotiation

still gets to perform to other task. The agents thus face a version of the game of
chicken (figure 3.5) with uncertainty about the other agent’s payoff. Namely, i does
not know if j wants to de-commit or not. If i has some probabilistic data on j’s
offers then these could be used to generated an extended-form game. Agent i can
then find the Nash equilibrium of this game and play that strategy.

Another solution is to extend the negotiation protocol to include tentative con-
tracts. For example, we could extend the contract net protocol to include pre-bid
and pre-assignment steps (Aknine et al., 2004). This allows agents to make tenta-
tive commitments which they can make binding at a later time when they are more
certain that no new offers will arrive from other agents.

6.6 Complex Deals

Thus far we have considered deals to be atomic units that cannot be broken down
into smaller pieces. In contrast, real world deals are known to be composed of many
different items such as price, warranty, delivery time, color, etc. For example, two
agents negotiating over the purchase of a car will need to agree on the price to
be paid, the color of the car, the number of years in the warranty, the value of
the trade-in car, the type of financing and interest rate provided, and many other
possible parameters. We describe these complex preference languages in Section 6.7.
These dimensions inevitably lead to an explosion in the space of possible deals.

More formally we define a multi-dimensional deal as one that is composed
multi-dimensional deal

of a set of variables x1, x2, . . . , xn with domains D1, D2, . . . Dn, respectively. For
example, one variable could correspond to price and its domain could be all integer
numbers in the range 0 to 100. We can also re-define the agent’s utility function
so that it explicitly represents each variable. For example, instead of an opaque
ui(δ), we could have a more expressive ui(δ) = c1u

1
i (x1)+ c2u

2
i (x2)+ · · ·+ cnu

n
i (xn)

or some other combination of the individual variables. The negotiation problem
remains that of finding a deal that corresponds to a chosen solution concept, such
as the utilitarian deal or the Nash bargaining deal.

The astute reader will notice that this is nearly the exact same problem as
the distributed constraint optimization problem from Chapter 2. In fact, the only
difference between multi-dimensional negotiation and the constraint optimization
problem is that they assume different data distribution requirements. In distributed
constraint optimization it is assumed that each agent owns one or more variables
whose value it can change and the agents generally only care about the value of
their variable and a few other ones. In negotiation the variables are not owned by
any agent and the agents generally have preferences over all the variables. Finally,
in constraint optimization there is a clear solution concept—minimize constraint
valuations—while in negotiation each agent is assumed to have a utility function
and there is no one obviously better solution concept.

When the problem uses multi-dimensional deals we often find that the total num-
ber of deals is extremely large—the number of possible deals grows exponentially
with the number of variables. Thus, it becomes even more likely that a hill-climbing
negotiation algorithm will get stuck in a local optima. For example, figure 6.17
shows how we could converge to a non-Pareto deal via protocol similar to mono-
tonic concession. The agents start out by proposing deals that are the best possible
for them and then concede to the other agent. However, the agents only consider
deals that differ from the last proposed deal by changing only a few variables—they
are “near” the last proposed deal if we define the distance to be the number of vari-
ables that have changed. Since they only consider a subset of the deals they might

The Hamming distance, a

similar concept from

information theory, between

two binary strings is the

number of positions which are

occupied by different values.

Thus the distance between 101

and 110 is 2.

end up ignoring better deals. Specifically, the agents in the figure ignore the deals
on the right part of the chart. As such, they end up converging on a deal which is
Pareto-dominated by many other possible deals.

The reason for ignoring the deals is often the simple fact that the space of
possible deals is so large that there is not enough time for the agent to sample it
well enough to find other deals which are better than the ones it has proposed. In

6.6. Complex Deals 95

δ

ui(δ)
uj(δ)

δ1
i

δ2
i

δ1
j

δ2
j

δ3
i,j

Pareto domi-
nate δ3

i,j

Figure 6.17: Example of con-
vergence to non-Pareto deal.
The agents converge to deal
δ3i,j which is Pareto-dominated
by all the deals indicated on
the right.

these cases agents choose a few attributes and change their values monotonically.
For example, when negotiating a complex car deal you might wish to keep all other
attributes at fixed values and negotiate only over price. In that case you might end
up at a non-Pareto deal if your chosen values for the other attributes are not the
right ones, such as the case where the dealer would be willing to accept a much
lower price for a car with a one-year warranty rather than the three-year warranty
you are asking for.

We can formalize this strategy by having the agents agree on one dimension at a
time. For example, we could declare that the agents first agree on the price at which
the car will be sold, then go on to haggle on the warranty, then on the color, and so
on until all the dimensions are covered. The order in which these negotiations are
carried out is called an agenda. As you might expect, ordering the negotiation in

agenda
this way can sometimes lead to sub-optimal outcomes but does make the negotiation
problem tractable for a lot more cases. Comparison of the results from agenda-based
negotiations versus full negotiation, using specific negotiation strategies have shown
that a social welfare deal is reached under certain combination of strategies (Fatima
et al., 2004) .

6.6.1 Annealing Over Complex Deals

A common solution to the problem of searching for an optimal solution over a
very large space of possible answers is to use an annealing method. Simulated

annealing
annealing algorithms start out with a randomly chosen deal which becomes the
best deal found thus far. New possible deals are generated by mutating this deal
and are accepted as the new best deal if they are better than the current best deal or,
with a certain probability, they are accepted even if they are worse than the current
best. The probability of accepting a worse deal and the severity of the mutations
both decrease with time. In this way the algorithms is guaranteed to converge to
a locally optimal solution. In practice it has been found that this solution is often
also the global optimum.

Simulated annealing has been used to implement several simple negotiation pro-
tocols (Klein et al., 2003). The protocol uses a mediator agent instead of having

mediator
agents negotiate with each other. At each step the mediator presents a deal to both
agents. The agents can either accept the deal or reject it. If both of them accept
the deal the mediator mutates the deal slightly and offers the new deal to both
agents, who can once again either accept it or reject it. If one or more of the agents
rejected the proposed deal then a mutation of the most recently accepted deal is
used instead. The protocol implemented by the mediator is shown in figure 6.18.

We can then implemented two types of agents.

Hill Climber Accepts a deal only if it gives him a utility higher than its reservation

96 Chapter 6. Negotiation

Figure 6.18: Procedure
used by annealing mediator.

annealing-mediator

1 Generate random deal δ.
2 δaccepted ← δ

3 Present δ to agents.
4 if both accept
5 then δaccepted ← δ

6 δ ← mutate(δ)
7 goto 3
8 if one or more reject
9 then δ ← mutate(δaccepted)

10 goto 3

Figure 6.19: Two steps in the
annealing algorithm with one
hill climber j and one anneal-

ing agent i. After the medi-
ator presents δ1 both agents
set up their new reservation
prices shown by the line, for
j, and the fuzzy bar for i. δ

ui(δ) uj(δ)

δ1

Hill Climber j

Annealer i
max(1, e−

∆U
T)

δ2

price ui(δ−) and higher than that of the last deal it accepted. That is, it
monotonically increases it reservation price as it accepts deals with higher
utility.

Annealer Use a simulated annealing algorithm. That is, it maintains a tempera-
ture T and accepts deals worse than the last accepted deal with probability
max(1, e−

∆U
T), where ∆U is the utility change between the deals.

Annealer agents, along with the annealing mediator, effectively implement a
simulated annealing search over the set of possible deals. Meanwhile, hill climbing
agents implement a hill climbing search over the set of possible deals.

For example, in figure 6.19 agent j is a hill climber and i is an annealer. After
the mediator presents δ1 both of them accept since its utility is higher than their
reservation prices. The hill climber sets a new reservation price below which he will
not accept any deal. The annealer sets up a probability of accepting deals that are
below his new reservation price. When δ2 appears, j will accept it because it is
above its reservation price and i might also accept it, but with a small probability
as ui(δ2) is slightly below its reservation price.

This type of annealing algorithm is a good example of how we can take a standard
search technique like annealing and apply it to a distributed negotiation problem.
Annealing works because there is some randomness in the sequence of deals that
are explored. The annealing negotiation protocol places this randomness within a
negotiation. Unfortunately, generating proposal deals purely at random means ig-
noring any knowledge that the agents have about the shape of their utility function.
Also, an annealing agent is acting irrationally when it accepts a deal that is worse
for it than a previous deal. We would need some way to justify why this agent
occasionally acts irrationally.

6.7. Argumentation-Based Negotiation 97

6.7 Argumentation-Based Negotiation

We can further relax the idea of an agenda, where agents negotiate sequentially
over each dimension of the deal, and instead define a more complex negotiation lan-
guage which agents can use for negotiation. That is, thus far we have only considered
the use of a 1-sided proposal where a deal is proposes and it is either accepted

1-sided proposalor rejected. In argument-based protocols the agents use a more sophisticated
argument-based

protocols
language for communications. There are currently no standard languages for argu-
mentation although there is a lot of work being done on preference languages, as we
will see in Chapter 7. Still, we can categorize the various types of utterances that
an argumentation language might support (Jennings et al., 2001).

Specifically, an agent might be able to critique the proposal submitted by the
critique

other agent. Critiques provide the agents with information about others’ utility
functions, specifically with respect to the previous proposal. This information can
be used to rule out some deals from consideration. For example, agent i and j might
engage in the following negotiation:

i: I propose that you provide me with x1 = 10 under conditions x2 < 20 and
delivery x3 < 20061025 .

j: I am happy with the price of x2 < 20 but the delivery date x3 is too late.

i: I propose that I will provide you with service x1 = 9 if you provide me with
x1 = 10.

j: I don’t want x1 = 9.

An agent might come back with a counter-proposal which are new deals, just
counter-proposal

like in the alternating offers models, but which are generally assumed to be related
to the last offer. For example,

i: I propose that you provide me with service x1 = 10 under conditions x2 < 20
and delivery x3 < 20061025 .

j: I propose that you provide me with service x1 = 10 under conditions x2 < 30
and delivery x3 ≥ 20061025 .

An agent might be able to justify his negotiation stance with other statements.
justify

Statements it hopes will convince the other agent to accept his proposal. These
statements are just ways of giving more knowledge to the other agent in the hopes
that it will use that knowledge to eliminate certain deals from consideration. For
example,

i: My warehouses is being renovated and it will be impossible to deliver anything
before the end of the month, that is x3 > 20061031 .

An agent might try to persuade the other agent to change its negotiation stance.
persuade

Persuasion is just another way of giving more knowledge tot the other agent. For
example,

i: Service x1 = 9 is much better than you think, look at this report.

Finally, an agent might also employ threats, rewards, and appeals in order to
threats
rewards
appeals

convince the others to accept his proposal. These techniques help agents build better
models of the others’ utility functions, eliminate sets of deals from consideration,
and change the agents utility functions in order to make them better reflect the
reality of the situation.

Argument-based negotiation closely matches human negotiation. Unfortunately,
that also means that it is very hard to build agents that can understand these
complex negotiation languages. A common approach is to build the agent using
Prolog or some other logic-based language. The agent can then keep a database

98 Chapter 6. Negotiation

Figure 6.20: Graphical rep-
resentation of a negotiation

network with agents i, j, and
k, where ∆1 is a set of deals
that i and j can agree upon. j

i

k

∆1 ∆2

∆3

of the messages (facts) sent by the opponent and try to infer the set of possible
contracts. Even when exploiting the inference powers of a logic-based programming
language the problem of implementing correct argument-based negotiators is still
very hard. No one has been able to implement a general argument-based negotiator.
Even when limiting the problem to a specific domain, there are very few examples
of successful programs that do argument-based negotiation. Still, there is a growing
research community developing new preference description languages to be used by
auctions, as we will see in Chapter 7. These languages could just as easily be used
by an argumentation-based agent as by a centralized auctioneer.

There is a community of agent-based argumentation researchers working on de-
veloping a standardized language for arguments (nevar et al., 2006; Rahwan et al.,
2004). They distinguish between the communication and domain languages used for
representing the arguments and the negotiation protocol which constraints which
type of messages can be sent at which time and what they mean. For example,
a protocol could have rules on when a negotiation must end such as when one of
the agents says “that is my final offer”. Similarly, a protocol could have commite-
ment rules which specify whether or not an agent can withdraw from a previous
commitment it made.

6.8 Negotiation Networks

It is possible that an agent might be involved in concurrent negotiations with
concurrent
negotiations

several other agents where the resulting deals might not be compatible with each
other. For example, you might be negotiating with several car dealers at the same
time, as well as negotiating a car loan with several lenders and car insurance with
several insurance agencies. Once you make a purchasing deal with a specific dealer
then you can stop negotiating with the other dealers. Furthermore, if the deal you
made includes a loan agreement you can also stop negotiating with the lenders.
Thus, as you negotiate with the various parties their last offers will tend to have
an effect on how you negotiate with the others. For example, if a lender offers you
a very low interest rate then you might be able to afford a more expensive car and
you will not be swayed by the dealer’s offer that includes a higher interest rate loan.

More formally, we can define a negotiation network problem as one were a set
of agents negotiate over a set of deals such that all agents end up agreeing to a set
of deals that are compatible with each other.

Definition 6.7. A negotiation network problem involves a set of agents A and
negotiation network

set of sets of deals. Each set of deals ∆i involves only a subset of agents ∆a
i ⊆ A

and always includes the no-deal deal δ−. A solution ~δ to the problem is a set of
deals, one from each ∆i set, such that all the deals that each agent is involved in
are compatible with each other. Compatibility is captures by the c function, where

ci(δ, δ′) =
{

1 if δ and δ′ are compatible
0 otherwise.

Figure 6.20 shows a graphical representation of a negotiation network problem
with three agents: i, j and k, and where i and j can enter into any of the deals in
∆1, similarly i and k can enter into a deal from ∆2 and j and k can enter into a

6.8. Negotiation Networks 99

i j

−10−1

1 −1
Figure 6.21: The coercion
network.

i j k
10 10

Figure 6.22: A network with
three agents. Agent j can only
split 10 dollars with either i or
k, but not both.

deal from ∆3. We also need to define the boolean functions ci, cj , and ck which tell
us which pair of deals are compatible.

In the negotiation networks the standard negotiation problem is further exac-
erbated by the fact that each agent must maintain simultaneous negotiations with
several other agents and these negotiations impact each other. The approaches at
solving these type of problem has thus far consisted of using ad-hoc negotiation
strategies and running tests to determine how these fare against each other (Nguyen
and Jennings, 2004; Zhang et al., 2005a; Zhang et al., 2005b).

6.8.1 Network Exchange Theory

Another way to approach the problem of negotiation networks is to look at what
humans do and try to imitate it. This is known as the descriptive approach.

descriptive approach
Luckily for us, researchers in Sociology have developed and studied a model which
they call network exchange theory (net) that is very similar to the negotiation

network exchange
theory

networks problem (Willer, 1999). In this model humans are represented by nodes in a
graph. The annotated edges between nodes represent the possibility of a negotiation
between those two humans. Sociologists have run tests with human subjects in these
networks in order to record how they behave. They then found equations that can
be used to predict the deals that people eventually agree on, on average, based on
the initial structure of the problem.

Figure 6.21 shows a simple net network. The nodes represent agents i and j.
The edges are directional and represent interaction possibilities from the source
agent to the destination agent where only the source agent can decide whether to
enact the interaction. Specifically, if i decides to enact its edge it would give i a
utility of −1 and would give j a utility of −10. Imagine that i is threatening to
harm j if i does not relinquish his wallet. Similarly j could decide to enact its edge
which would give it a utility of −1 and give i a utility of 1. This particular network
is known as a coercion scenario because i can threaten j to give him the 1 otherwise
i will punish j by giving it −10. Even thought it is not rational for i to want go
punish j for it is punishing itself at the same time, the threat works in the real
world. Another type of edge used is the resource pool edge where an amount of
utility is to be divided among the agents but the agents must decide how it is to
be distributed. A sample is shown in figure 6.23. This network shows two agents, i
and j, who are negotiating over how to divide 10 dollars.

net can also represent various deal compatibility requirements. One such exam-
ple is exclusive connections where one agent can exchange with any one of a number
of other agents but exchange with one of them precludes exchange with any of the
other ones. This is typically simply represented by just adding more nodes and edges
to the graph, as shown in figure 6.22.

Based on test results, net tells us that each person has a resistance to each
resistance

particular payment p given by a resistance equation. i’s resistance to payment p is
given by

ri =
pmax
i − pi
pi − pcon,

i

(6.8)

where pmax
i is the maximum i could get and pcon

i is the no-deal deal. j’s resistance
is similarly defined. If we further know that i and j are splitting 10 dollars then we

100 Chapter 6. Negotiation

Figure 6.23: A sam-
ple exchange network

with 10 units to be dis-
tributed among two agents. i j

10

Figure 6.24: Resistance of two
agents to each possible deal p. p

ri(p) rj(p)equi-resistance point

know that pi + pj = 10.
The resistance equation is meant to capture the person’s resistance to agreeing

to a deal at any particular price. The higher the resistance the less willing the person
is to agree to the deal. Note how this equation is not linear, as might be expected if
people were rational, but has an exponential shape. This shape tells us a lot about
our irrational behavior.

net tells us that exchange happens at the equi-resistance point where both
equi-resistance point

agents have equal resistance, that is where

ri =
pmaxi − pi
pi − pconi

=
pmaxj − pj
pj − pconj

= rj . (6.9)

Notice that the equi-resistance equation tells us the agreement that people will
eventually reach via negotiation, but it does not tell us how the negotiation took
place, that is, it does not tell us their negotiation tactics.

We can represent the equi-resistance point graphically by simply replacing pj
with 10−pi in j’s resistance equation rj and plotting the two curves ri and rj . The
point at which the curves cross is the point of exchange, as shown in figure 6.24.
Of course, the exchange does not always happen at the midpoint. For example, if
i had an offer from some other agent for 6 dollars if it refused to negotiate with j,
this would mean that pconi = 6 which would change the equi-resistance point.

We can solve complex nets using the iterated equi-resistance algorithm.
iterated equi-resistance
algorithm

The algorithm simply uses the equi-resistance equation repeatedly on each edge
of the graph in order to calculate the payments that these agents can expect to
receiver. This is repeated for all edges until payments stop changing. For example,
for the graph in figure 6.22 we would follow these steps.

1. Apply Equi-resistance to i j
10

. Gives us pj = 5.

2. Apply Equi-resistance to j k
10

. Let pconj = 5 and apply equi-resistance
again.

3. Repeat until quiescence.

The iterated equi-resistance algorithm is not guaranteed to converge and it might
converge to different solutions when the edges are sorted in differently. Even when
it does converge the deal it reaches is not guaranteed to be the one that humans
would reach. However, many experiments have been performed with humans in small
networks (less than 12 nodes) which have shown that the iterated equi-resistance

6.8. Negotiation Networks 101

algorithm correctly predicts the resulting deal. This algorithm gives a new solution
for the negotiation problem which, unlike the solutions in Section 6.1.1, is not based
on some desirable properties of the solution but is based on evidence from human
negotiation, that is, it gives us a descriptive solution to the negotiation problem.
If you want to implement agents that reach the same solution as humans then you
probably want to use the iterated equi-resistance solution.

Exercises

6.1 Given the following utility values for agents i and j over a set of possible deals
δ:

δ ui(δ) uj(δ)

δ1 1 0
δ2 0 1
δ3 1 2
δ4 3 1
δ5 2 2
δ6 1 1
δ7 8 1

1. Which deals are on the Pareto frontier?

2. Which one is the egalitarian social welfare deal?

3. Which one is the utilitarian deal?

4. Which one is the Nash bargaining deal?

5. Which one is the Kalai-Smorodinsky deal?

6.2 In a distributed workflow enactment application, a workflow is defined as a set
of tasks all of which must be performed in order to complete the workflow and
collect the payment. The following table lists the available workflow instances,
their tasks and their payments:

Workflow Tasks Payment

w1 t1, t1, t1 6
w2 t1, t1, t2 5
w3 t1, t1, t3 3
w4 t1, t2, t2 1
w5 t2, t2, t3, t3 8
w6 t2, t2 1

There are three agents. An agent can perform at most two tasks at a time, as
long as those tasks are different. Also, a task is performed for only a single
workflow. That, if an agent performs t1 for w1 then this t1 cannot be used
for any other workflow. The goal is for the agents to find the set of workflows
that maximizes the total payment.

1. Re-state this problem as a negotiation problem, show the set of possible
deals. (Hint: note that the agents have identical capabilities, so you do
not need to worry about which one does which task).

2. We further constrain this negotiation by only allowing agents to either
drop one workflow, add one workflow, or exchange one workflow for an-
other. But, they can only do so if this increases the total payment (thus,
you quickly conclude that they will never drop a workflow). Which deals
become local optima under these constraints?

Chapter 7

Auctions

Auctions are a common and simple way of performing resource allocation in a mul-
tiagent system. In an auction, agents can express how much they want a particular
item via their bid and a central auctioneer can make the allocation based on these
bids. Of course, this generally requires the use of a centralized auctioneer but there
are techniques for reducing this bottleneck. Still, even centralized auctions can be
very complex and produce unexpected results if one does not understand all the
details.

7.1 Valuations

Before we begin to talk about the various types of auctions we must first clarify
how people value the items being sold. We have used the notation ui(s) to refer to
the utility that agent i derives from state s. Similarly, if s is instead an item, or
set of items, for sale we can say that vi(s) is the valuation that i assigns to s. We

valuation
furthermore assume that this valuation is expressed in a common currency, thus
vi(s) then becomes the maximum amount of money that agent i is willing to pay
for s. When studying auctions we generally assume that all agents have a valuation
function over all the items being sold.

In the simplest case this valuation function reflects the agent’s utility of owning
the given items. For example, if you plan to eat a meal then the amount you are
willing to pay for each item in the menu depends solely on how hungry you are and
how much you like each item. In these cases we say that the agent has a private
value function.

private value
On the other hand, there are items which you cannot consume and gain no

direct utility from but which might still have a resale value. The classic example are
stocks. When you buy a share in some company you cannot do anything with that
share, except sell it. As such, your valuation on that share depends completely on
the value that others attribute, and will attribute, to that share. These are known
as common value functions.

common value
Most cases, however, lie somewhere in the middle. When you buy a house you

take into consideration the value that you will derive from living in that house as well
as its appreciation prospects: the price you think others will pay when you finally
sell it. This is an example of a correlated value function and is very common in

correlated value
the real world with durable high priced items.

The type of valuation function that the agents use changes their optimal behavior
in an auction. For example, if an agent has a common value function then it will
likely pay more attention to what the other agents are bidding. Most multiagent
implementations use agents with private value functions as most systems do not
want to waste the time required to implement secondary markets for the items
being sold. Still, in open multiagent systems it might be impossible to prevent
secondary markets from appearing.

103

104 Chapter 7. Auctions

7.2 Simple Auctions

There are times when there are many agents and the only thing they need to
negotiate over is price. In these occasions it makes sense to use an auction since
they are fast and require little agent communication. However, auctions are not as
simple as they might appear at first and there are many ways in which things can
go wrong when using them.

The actual mechanisms used for carrying out an auction are varied. The most
common of all is the English auction. This is a first-price open-cry ascending

English auction
first-price open-cry
ascending

auction. It is the standard one used in most auction houses. In it, the auctioneer
raises the price as people yell higher bids. Once no one is willing to bid higher, the
person with the highest bid gets the item and pays his bid price. These auctions
sometimes have an initial or reservation price below which the seller is not willing

reservation price
to sell. The dominant strategy in an English auction, with private value, is to bid
the current price plus some small amount until either the auction is won or one’s
reservation price is reached.

If an English auction is common or correlated value then it suffers from the
winner’s curse. For example, when you buy a stock in an English auction it means

winner’s curse that you paid more than anyone else was willing to pay. As such, your valuation of
that share must now be less than what you paid for it. In the real world we gamble
that at some point in the future the others will realize that this stock really is worth
that much more.

A similar auction type is the First-price sealed-bid auction. In this auction
First-price sealed-bid each person places his bid in a sealed envelope. These are given to the auctioneer

who then picks the highest bid. The winner must pay his bid amount. These auctions
have no dominant strategy. The buyer’s best strategy is to spy on the other bidders
in order to determine what they are going to bid and then bid slightly higher than
that, as long as that is less than one’s reservation price. If spying is impossible then
the agent has no clearly superior strategy. Because of the incentive for spying, these
auctions lead to a lot of inefficiencies when paired with intelligent agents.

Ontario Flower Growers

Co-op, an example of a Dutch

auction at work. The two large

circles in the back are used to

show the descending price.

The Dutch auction is an open-cry descending price auction. In it the seller

Dutch
open-cry descending
price

continuously lowers the selling price until a buyer hits a buzzer, agreeing to buy at
the current price. The auction’s name comes from its use by the Dutch to sell flowers.
The Dutch flower markets have been around for centuries and are still thriving.
Every morning carts of flowers are paraded before eager flower shop owners who are
equipped with a buzzer. Each cart stops before the buyers and a clock starts ticking
backwards from a high number. When the first buyer hits his buzzer the flowers
are sold to him at the current price. Analysis of the Dutch auction shows that it
is equivalent to a first-price sealed-bid auction in terms of strategy. That is, it has
no dominant strategy. However, it has the nice property of being real-time efficient.
The auction closes quickly and the auctioneer can make it move even faster by
lowering the price faster. This real-time efficiency makes it a very attractive auction
for selling cut flowers as these lose their value quickly after being harvested.

The Vickrey auction is a more recent addition and has some very interesting
Vickrey properties. It is a second-price sealed-bid auction. All agents place their bids and
second-price sealed-bid

the agent with the highest bid wins the auction but the price he pays is the price
of the second highest bid. Analysis of this auction has shown that bidding one’s
true valuation, in a private value auction, is the dominant strategy. For example,
let your valuation for the item being sold be v. If you bid less than v then you are
risking the possibility that some other agent will bid w < v and get the item even
though you could have won it. Moreover, since w is less than v you could have bid
v and paid only w. As such, you have nothing to gain by bidding less than v but
risk the possibility of losing an auction that you could have won at an acceptable
price. On the other hand, if you bid v′ > v then you are risking that some other
agent will bid w, where v′ > w > v, and thereby cause you to pay more than your
reservation price v. At the same time, you do not gain anything by bidding higher

7.2. Simple Auctions 105

1 2 3 4 5

Sell

Sell

Sell Sell Sell

Buy Buy

Buy

Buy Buy

Figure 7.1: Graphical repre-
sentation of a double auction.
The x-axis represents prices.
Each box represents one buy
or sell order at the given price.

than v because the only auction that you might win by bidding v′ instead of v are
those where you have to pay more than v.

William Vickrey. –.

Nobel Prize in Economics.

As such, the Vickrey auction eliminates the need for strategizing. Since there
is an easy dominant strategy the agents do not have to think about what they
should do. They just play their dominant strategy and bid their true valuation.
Thus makes it a very attractive auction in terms of its efficiency but it is also for
this reason that most people don’t like Vickrey auctions. People are often hesitant
about revealing their true valuations for an item because we know that the world
is an iterated game and this information could be used against us in some future
auction. As such, Vickrey auctions are seldom used in the real world.

Finally, the double auction is a way of selling multiple units of the same item.

double auction

It is the auction used in stock markets. Each buyer places either a buy or a sell
order at a particular price for a number of instances of the item (number of shares
in the stock-market). The buy and sell bids can be visualized in a simple graph such
as the one shown in Figure 7.1. Here, the x-axis represents a price and each box
represents an offer to buy or sell a share at the given price.

Once we have all the bids then it is time to clear the auction. There are many
different ways to clear a double auction. For example, if figure 7.1 we could match
the sell order for 1 with the buy for 5 then pocket the difference of 5 − 1 = 4 for
ourselves, or we could clear it at 3 and thus give both bidders a deal, or we could
match the seller for 1 with the buy for 1, and so on. As can be seen, there are many
different ways to match up these pairs and it is not clear which one is better.

One metric we might wish to maximize is the amount of surplus, known as the
spread by traders. That is, the sum of the differences between the buy bids and the
sell bids. In some auctions this surplus is kept by the auctioneer who then has an
incentive to maximize it. Another option is to use it to enable more bids to clear. In
the example above the total supply and demands are 12, therefore all bids should
clear. One way to do this is to pair up all the small sell bids and give these sellers
exactly what they asked for then give the surplus to the sell bid of 5 in order to
clear it with the remaining buy bid.

Another metric we could use is a uniform price. That is, rather than giving each
seller and buyer the exact price they asked for, we give them all one uniform clearing
price. Clearly, the only buy bids that will clear are those that are above the clearing
price and the only sell bids that clear are those below the clearing price.

7.2.1 Analysis

Now that we know the various auction types, there is an obvious question that we
must ask ourselves. On which auction do sellers make more money? This question
is answered by the following theorem.

Theorem 7.1 (Revenue Equivalence). All four single-item auctions produce the
same expected revenue in private value auctions with bidders that are risk-neutral.

106 Chapter 7. Auctions

Table 7.1: Example of
inefficient allocation.

Costs of Doing Tasks

tasks Agent 1 Agent 2

t1 2 1.5
t2 1 1.5
t1,t2 2 2.5

We also know that if the bidders are risk-averse then the Dutch and first-price are
better. A risk-averse bidder is willing to pay a bit more than their private valuation
in order to get the item. In a Dutch or First-price auction a risk-averse agent can
insure himself by bidding more than would be required.

In common or correlated value cases the English auction gives a higher revenue
to the seller. The increasing price causes others to increase valuation. That is, once
the agent sees others bidding very high for the item the agent realizes that the item
is really worth more to the other agents so it also raises its valuation of the item.1

As it is often the case when money is involved, we have to be on the look out
for ways in which the agents might cheat. The problem of bidder collusion affects

bidder collusion
all 4 auctions. In bidder collusion the bidders come to an a-priory agreement about
what they will bid. They determine which one of them has the higher valuation
and then all the other bidders refrain from bidding their true valuation so that the
one agent can get it for a much lower price. The winner will then need to payback
the others. The English and Vickrey auctions are especially vulnerable to bidder
collusion as they self-enforce collusion agreements. For example, say there are

self-enforce collusion
10 buyers and they realize that one of them has a valuation of 100 while the others
have a valuation of 50 for the item. They agree to let him buy it for 1. In an English
auction one of the 99 agents could defect and bid 2. However, this would only make
the high-valuation agent bid 3, and so on until they get to 51. The high-valuation
agent will get the item for 51 so the other agent gets nothing by defecting. The
same logic applies in a Vickrey auction.

Another problem might be that a lying auctioneer can make money from a
lying auctioneer

Vickrey auction. All he has to do is to report a higher second-price than the one that
was announced. The winner then pays this higher second price to the auctioneer
who gives the buyer the real second price and pockets the difference. This requires
that the bids are not revealed and that the buyer does not pay the seller directly. If
the buyer paid the seller directly then a lying auctioneer and the seller could collude
to charge the buyer a higher price. A lying auctioneer can also place a shill in an

shill: a decoy who acts as an

enthusiastic customer in order

to stimulate the participation

of others.
English auction. That is, assuming that the auctioneer gets paid a percentage of
the sales price. If the auctioneer gets paid a fixed amount then there is no incentive
for him to increase the sales price.

When auctioning items in a series when their valuations are interrelated, such
as chairs in a dining set or bandwidth rights in adjacent counties, it is possible to
arrive at inefficient allocations. For example, the problem in Table 7.1 leads to an
inefficient allocation if we first auction t1 and then t2. Specifically, if we auction t1
first then Agent 2 will get it as it has the lower cost. When we then auction t2 both
agents have the same cost (1) but, no matter who gets it the total cost is 2.5. If, on
the other hand agent 1 had won both tasks then the total cost would be 2. matter
who gets it the total cost is 2.5. This is the problem of inefficient allocation.

inefficient allocation
We could solve this problem if we made the agents use full lookahead effec-

tively building an extended-form game from their possible interactions. With full
lookahead the agents can build a tree where each level corresponds to a task being
auctioned. In this way agent 1 can see that it will only cost him 2 to do t1 and t2 so
it can reduce its cost for t1 from 2 to 1. Of course, this puts agent 1 at risk of not
getting t2 since agent 1 generally will not know agent 2’s cost for t2 so it does not
know if it will win that auction. Another much better way of solving the problem of

1An interesting example of this was a British auction for 3G bandwidth licenses. The standard
English auction was modified so that everyone must agree to buy at the current price or leave the
room. This led to the licenses selling for 1000 times the expected amount (Harford, 2005).

7.3. Combinatorial Auctions 107

inefficient allocations is to use a combinatorial auction, which we will learn about
in Section 7.3.

7.2.2 Auction Design

When designing an auction for a multiagent system you must make many decisions.
You must first determine what kind of control you have over the system. It is possible
that you control only the bidding agent and the auction is already implemented,
as when building agents to bid on Ebay. It is possible that you control only the
auction mechanism, as when building an auction website. Finally, it is possible that
you might control both agents and mechanism, as when building a closed multiagent
system.

The case where you control the mechanism is especially interesting. You must
then decide what bidding rules you will use: when bids are to be placed, when they
can no longer be placed, what form can these bids takes, and what rules they must
follow. For example, you might set a rule that a new bid has to always be for a
higher value. You also set up clearing rules which determine when the items are
sold. We explained some of the problems with various clearing rules in the double
auction. The four standard auction types already have clearing rules but you might
want to modify these. Finally, you must decide on information rules: how much
information the agents are to know about what the other agents bid, whether to
reveal information during the bidding process itself or after clearing (Wurman et al.,
2002).

Currently all online auctions are implemented as centralized web applications
but it is not hard to imagine a future where the auctions are freed from the con-
straints of a central hub and become a protocol enacted by buying and selling
agents.

7.3 Combinatorial Auctions

Arguably, the combinatorial auction has been the most widely used auction in
combinatorial auction

multiagent systems. In it agents can place bids for sets of items instead of just
placing one bid for each item for sale. In many systems we have the problem that
there is a set of tasks or jobs that needs to be distributed among the agents but the
agents have complex preferences over the set of tasks. For example, in a workflow
application we have a set of workflows, each composed of a set of web services,
which must be performed by certain deadlines. Each agent can perform a subset of
the services but each agent has different costs which might depend on the agent’s
type, its current load, the services it has done before, etc. Our problem as system
designers is to allocate the workflows to agents so that we maximize the total number
of workflows completed. Another example of combinatorial auctions is the selling
of broadcasting rights by the federal government where cellular companies prefer to
own the same frequencies in nearby locations, or at least to own some bandwidth
in all the neighborhoods of a city. A final example is the buying of parts to put
together a PC which requires a motherboard, CPU, ram, etc. Each part can be
bought independently but only some bundles work together. These problems, and
all problems of this type, can be solved by a combinatorial auction.

Formally, we define a combinatorial auction over a set of items M as being
composed of a set of bids, where each agent can supply many different bids for
different subset of items. Each bid b ∈ B is composed of bitems, which is the set of
items the bid is over, bvalue the value or price of the bid, and bagent which is the
agent that placed the bid.

For example, say you had a set of 5 figurines, one each of a different Teen Titan
and you received 6 different combinatorial bids, as shown in Figure 7.2. The question
you then face is how to determine which are the winning bids so as to maximize the
amount of revenue you receive. Note that you can sell each item only once since you

108 Chapter 7. Auctions

Figure 7.2: Teen Titans fig-
urines: (from top left) Beast
Boy, Cyborg, Robin, Raven,

and Starfire. The set of combi-
natorial bids received for them

in on the table at the right.

Price Bid items

$1 Beast Boy
$3 Robin
$5 Raven, Starfire
$6 Cyborg, Robin
$7 Cyborg, Beast Boy
$8 Raven, Beast Boy

only have one of each. This is the problem of winner determination. In the figure,
the correct solution would be to accept the $3, the $5 and the $7 bids.

7.3.1 Centralized Winner Determination

The winner determination problem is finding the set of bids that maximizes the
winner determination

seller’s revenue. Or, more formally, find

X∗ = arg max
X⊆C

∑
b∈X

bvalue (7.1)

where C is a set of all bid sets in which none of the bids share an item, that is

C = {Y ⊆ B | ∀a,b′∈Y aitems ∩ bitems = ∅}. (7.2)

A variation on this problem is

when agents can submit xor

bids. That is, when an agent

can say that it wants only one

of his bids to win.

Computationally, both

problems are similar.

Unfortunately, this is not a simple problem as there are, in the worst case, many
possible bidsets. Specifically, if bids exists for all subsets of items then X is a way
of partitioning the set of items S into non-overlapping subset. That is, take the set
of items S and figure out how many ways it can be split into smaller sets. We can
calculate this number by remembering that the Stirling number of the second
kind gives us the number of ways to partition a set of n elements into k non-empty

Stirling number of the
second kind

sets. Namely,

S(n, k) =
1
k!

k−1∑
i=0

(−1)i
(
k

i

)
(k − i)n. (7.3)

Using this formula we can easily determine that the total number of allocations
of m items is given by

m∑
i=1

S(m, i), (7.4)

which is bounded by
O(mm) and ω(mm/2).

This means that a brute force search of all possible allocations of items to agents
is computationally intractable. In fact, no approach will work in polynomial time.

Theorem 7.2. Winner Determination in Combinatorial Auction is NP-hard. That
is, finding the X∗ that satisfies (7.1) is NP-hard (Rothkopf et al., 1998).

Even simplifying the problem does not make it easier to solve. For example,
say that instead of trying to find the best allocation we simply want to check if
there exists an allocation with total revenue of at least w. We call this the decision
version of the winner determination problem. Lets also further restrict the types

decision version
of bids the agents can submit. Even under these circumstances the problem remains
hard.

Theorem 7.3. The decision version of the winner determination problem in com-
binatorial auctions is NP-complete, even if we restrict it to instances where every
bid has a value equal to 1, every bidder submits only one bid, and every item is
contained in exactly two bids (Cramton et al., 2006, Chapter 12).

7.3. Combinatorial Auctions 109

build-branch-on-items-search-tree

1 Create a singleton bid for any item that does not have one
2 Number items from 1 to m
3 Create empty root node
4 for n ∈M in order
5 do Add as its children all bids that
6 include the smallest item that is not an ancestor of n but
7 that do not include any item that is an ancestor of n.

Figure 7.3: Algorithm for
building a branch on items
search tree. This algorithms
does not find a solution, it
only builds a tree for the pur-
pose of illustration.

Thus, the problem is very hard, even when we try to limit its complexity. But,
there is some hope. The winner determination problem in combinatorial auctions
can be reduced to a linear programming problem and, therefore, solved in poly-

linear programming
nomial time with well-known algorithms but only if prices can be attached to single
items in the auction (Nisan, 2000). That is, there needs to be a singleton bid for
every item. In many cases we can satisfy this requirement by simply adding the
missing singleton bids, each with a value of 0. Specifically, the linear program which
models the winner determination problem is to find the x that satisfies the following:

Simplex is the most widely

used linear programming

algorithm. It has worst-case

exponential time, but in

practice it is much faster.

Other algorithms exist that are

guaranteed polynomial.

Maximize: ∑
b∈B

x[b]bvalue

Subject to: ∑
b | j∈bitems

x[b] ≤ 1,∀j ∈M

x[b] ∈ {0, 1},∀b ∈ B,

where x[b] is a bit which denotes whether bid b is a winning bid. That is, maxi-
mize the sum of the bid values given that each item can be in, at most, one winning
bid. It has also been shown that the linear programming problem will solve a com-
binatorial auction when the bids satisfy any one of the following criteria (Nisan,
2000):

1. All bids are for consecutive sub-ranges of the items.

2. The bids are hierarchical.

3. The bids are only or-of-xors of singleton bids.

4. The bids are all singleton bids.

5. The bids are downward sloping symmetric.

A different approach to solving the winner determination problem is to conduct
one of the standard ai-searches over all possible allocations, given the bids submit-
ted. The advantage over using a linear programming solver is that we can tweak
our ai search algorithms and optimize them to solve our specific problem. That is,
we can put some of our domain knowledge into the algorithm to make it run faster,
as we shall see.

Before we can do search we need to define our search tree. One way we can
build a search tree is by having each node be a bid and each path from the root to
a leaf correspond to a set of bids where no two bids share an item. The algorithm
for building this tree is shown in figure 7.3. We refer to this tree as a branch on
items search tree. Figure 7.4 shows an example tree built in this fashion. In this

branch on items
case we have five items for sale, numbered 1–5. The column on the left lists all the
bids received. We omit the bid amount and only show the set of items for each
bid. The search algorithm uses these bids to build the tree shown on the right of
the figure. We start at the first level from the top. All the children of the root are
bids that have item 1 in them. Then, we proceed to add children to each node. The

110 Chapter 7. Auctions

Figure 7.4: Branch on items
search tree for winner determi-

nation in combinatorial auc-
tions. Note that this tree has 9
leafs (9 possible ways of selling
all items given the bids) while

the total number of dividing
5 items into subsets is 52.

12

35

4

3

4

5

135

2

4

14

25

3

2

35 3

5

1

25

3

4

2

35

4

3

4

5

1
2
3
4
5
12
135
14
25
35

children of every node will be all the bids that contain the smallest number that is
not on the path from the root to the node. Since the algorithm has the provision
of adding a singleton bid with value 0 for every item, we are guaranteed to find a
suitable bid as a children of every node. The only time we cannot find such a bid is
when the path from the root to the node contains all items. In this case the node
is a leaf and the set of bids from root to leaf constitutes a possible bid set.

The speedup of this search over the brute force method of considering all possible
ways of breaking up 5 items into subsets can be confirmed by the fact that this tree
has 9 leafs, therefore only 9 working bid sets exists. Meanwhile, the application of
the Stirling formula gives us ∑

i=1...5

S(5, i) = 52,

which means that there are 52 ways to break up 5 items into subsets. Clearly,
fewer bids means faster run time which is the central idea of the search algorithm.
In general, we know that the number of leafs in the tree is bounded.

Theorem 7.4. The number of leaves in the tree produced by build-branch-on-
items-search-tree is no greater than (|B|/|M |)|M |. The number of nodes is no
greater than |M | times the number of leaves plus 1 (Sandholm, 2002).

We can also build a binary tree where each node is a bid and reach edge rep-
resents whether or not that particular bid is in the solution. We refer to this tree
as a branch on bids search tree, an example is shown in Figure 7.5. Each edge

branch on bids
on the tree indicates whether the parent node (bid) is to be considered as part of
the final bidset. For example, the rightmost branch of the tree consists of all “In”
branches so the rightmost leaf node corresponds to the bidset (35)(14)(2) which
forms a complete allocation. In practice, the branch on bids search tree is often
faster than the previous tree because it gives us more control over the order of bids
so we can better optimize the bid order. Also, the branch on bids search does not
require us to add dummy singleton bids.

We now have to decide how to search our chosen tree. Since both trees have a
number of nodes that is exponential on the number of bids a breadth first search
would require too much memory. However, a depth first search should be possible,
but time consuming. A branch and bound algorithm like the one we used for dcop
in Chapter 2.2 further helps reduce the search space and speed up computation. In
order to implement it we first need a function h which gives us an upper bound on
the value of allocating all the items that have yet to be allocated. One such function
is h

h(g) =
∑

j∈M−
S

b∈g b
items

max
b|j∈bitems

bvalue

|bitems|
, (7.5)

where g is the set of bids that have been cleared. The function h simply adds up the
maximum possible revenue that each item not in g could contribute by using the

7.3. Combinatorial Auctions 111

35

25

14

135

Out

5

In

Out

14

5

Out

3

In

In

Out

14

12

4

Out

4

In

Out

2
Out In

In

In
1
2
3
4
5
12
135
14
25
35

Figure 7.5: Branch on bids
partial tree. The black boxes
indicate search paths that
have terminated because they
denote a complete set of bids,
that is, no more bids can be
added because they contain
items already sold.

branch-on-bids-ca()
1 r∗ ← 0 � Max revenue found. Global variable.
2 g∗ ← ∅ � Best solution found. Global variable.
3 branch-on-bids-ca-helper(∅, B)
4 return g∗

branch-on-bids-ca-helper(g, available-bids)
1 if available-bids = ∅
2 then return
3 if

⋃
b∈g b

items = M � g covers all items
4 then if

∑
b∈g b

value > r∗ � g has higher revenue than r∗

5 then g∗ ← g
6 r∗ ←

∑
b∈g b

value

7 return
8 next ← first(available-bids)
9 if next items ∩

⋃
b1∈g b

items
1 = ∅} � next ’s items do not overlap g

10 then g′ ← g + next
11 if

∑
b1∈g′ b

value
1 + h(g′) > r∗

12 then branch-on-bids-ca-helper(g′,rest(available-bids))
13 branch-on-bids-ca-helper(g,rest(available-bids))

Figure 7.6: A centralized
branch and bound algorithm
that searchers a branch on
bids tree and finds the revenue
maximizing solution given a
set B of combinatorial bids
over items M .

bid that pays the most for each item, divided by the number of items on the bid.
This function provides an upper bound since no feasible bidset with higher revenue
can exist.

Given the upper bound h(g) we can then implement the branch and bound
algorithm shown in figure 7.6. This algorithm searches the branch on bids tree.
It maintains a partial solution g to which it adds one bid on each recursive call.
Whenever it realizes that partial solution will never be able to achieve revenue
that is higher than the best revenue it has already found then it gives up on that
subtree, see line 8 of branch-on-bids-ca-helper. This algorithm is complete and
thus guaranteed to find the revenue maximizing bidset.

We can also use the same heuristic function to do an A∗ search. Unfortunately,
since A∗ acts much like a breadth first search it generally consumes too much
memory. A viable solution is to use iterative deepening A∗. IDA∗ guesses how
much revenue we can expect and runs a depth-first search that prunes nodes that
have used more than that. If a solution is not found then the guess is reduced and
we try again. IDA∗, with some optimizations, was implemented by the Bidtree

Bidtreealgorithm (Sandholm, 1999) on the branch on items search tree. In practice, this
approach was found to often be slower than a branch and bound search.

The branch-on-bids-ca algorithm is the basic framework for the Combinato-
rial Auction Branch on Bids (CABOB) algorithm (Sandholm et al., 2005). cabob

CABOB

112 Chapter 7. Auctions

Figure 7.7: A centralized
branch and bound algorithm

that searchers a branch on
items tree and finds the rev-

enue maximizing solution
given a set B of combina-
torial bids over items M .

branch-on-items-ca()
1 r∗ ← 0 � Max revenue found. Global variable.
2 g∗ ← ∅ � Best solution found. Global variable.
3 branch-on-items-ca-helper(1, ∅)
4 return g∗

branch-on-items-ca-helper(i, g)
1 if i = m � g covers all items
2 then if

∑
b∈g b

value > r∗ � g has higher revenue than r∗

3 then g∗ ← g
4 r∗ ←

∑
b∈g b

value

5 return
6 for b ∈ {b ∈ B | i ∈ bitems ∧ bitems ∩

⋃
b1∈g b

items
1 = ∅} � b’s items do not overlap g

7 do g′ ← g + b
8 if

∑
b1∈g′ b

value
1 + h(g′) > r∗

9 then branch-on-items-ca-helper(i+ 1, g′)

improves the performance of the basic algorithm in several ways, one of which is
by improving the search for new bids to add to the partial solution. Specifically, we
note that a naive implementation of line 6 of branch-on-bids-ca-helper would
mean that we would build this set on each recursive call to the function. That would
be very time consuming as there are an exponential number of bids in B. cabob
handles this problem by maintaining graph data structure which has all the bids
that can still be used given g. The nodes in the graph are the bids that are still
available and the edges connect every pair of bids that share an item. In this way
when a new bid is added to g it is removed from the graph as well as all the other
bids that are connected to it.

ca We can also perform the branch and bound search on the branch on items search
tree, as shown in Figure 7.7. This algorithm is the basis for the CASS (Combina-

CASS torial Auction Structured Search) algorithm which also implements further refine-
ments on the basic algorithm (Fujishima et al., 1999).

Most algorithms for centralized winner determination in combinatorial auction
expand on the basic branch and bound search by using specialized data structures
to speed up access to the information need—the viable bids given the current partial
solution—and implement heuristics which have been shown to reduce the size of the
search space, especially for certain popular bid distributions. Some heuristics that
have been found useful include the following:

• Keep only the highest bid for any set. That is, if there is a bid of $10 for items
1,2 and another bid of $20 for 1,2 then we get rid of the $10 bid.

• Remove provably noncompetitive bids, that is, those that are dominated by
another bid or sets of bids. For example, if there is a bid for $10 for item 1 and
another bid for $5 for items 1,2 then the $10 bid dominates the $5 bid—any
situation in which we choose the $5 bid would be made better if we changed
that bid for the $10 bid.

• Decompose bids into connected sets, each solved independently. If we can
separate the set of bids into two or more sets of bids where all bids for any
item are to be found in only one of the sets then this set of bids becomes a
smaller, and independent, winner determination problem.

• Mark noncompetitive tuple of bids. For example, if there are bids $1:(1,2),
$1:(3,4), $10:(1,3), $10:(2,4) then the pair of $10 bids dominates the pair of
$1 bids, so we can get rid of them.

http://jmvidal.cse.sc.edu/netlogomas/ca.html

7.3. Combinatorial Auctions 113

• In the branch-on-items tree place the items with the most bids first on the
tree. This way the most constrained items are tried first thereby creating fewer
leafs.

• If the remaining search subtree is the same for different nodes in the search
tree, as can happen when different items are cleared but by different bids,
then these subtrees can be cached. The subtree is solved once and the answer,
that is, the best set of bids found in it, is saved for possible future use.

In general the best speed attainable by the best algorithms varies greatly de-
pending on the type of bids submitted. For example, if the number of items in each
bid is chosen from a flat probability distribution then we can solve problems with
thousands of items and tens of thousands of bids in seconds. On the other hand,
if each bid contains exactly five randomly chosen items and a price of 1 then we
can only solve problems with tens of items and hundreds of bids in a minute. The
Combinatorial Auction Test Suite (CATS) can generate realistic types of bid dis-

CATStributions so new algorithms can be compared to existing ones using realistic bid
sets (Leyton-Brown et al., 2000). It generates these bids by using several sample
scenarios. In one scenario there is a graph where the nodes represent cities and the
edges are railroad tracks that connect these cities. The items for sale are the tracks
between cities, that is, the edges. The agents are given pairs of host/destination
cities and are told that they need to establish a train route between their city pairs.
Thus, each agent determines all the possible sets of edges which connect his city
pairs and submits xor combinatorial bids on them. The value of each path depends
on the total distance; shorter routes are preferred.

7.3.2 Distributed Winner Determination

One problem with the centralized winner determination algorithms, aside from the
bottleneck, is that they require the use of a trusted auctioneer who will perform
the needed computations. Another option is to build a peer-to-peer combinatorial
auction protocol which lets the sellers themselves determine the winning set of bids
and discourages them from cheating.

Incremental Auctions: Distribute over Bidders

One way to distribute the winner determination calculation is by offloading it on the
bidding agents. We can do this by using an increasing price auction and making the
bidders figure out which bids would be better than the current standing bid. This
is the approach taken by the Progressive Adaptive User Selection Environment or
PAUSE combinatorial auction (Kelly and Stenberg, 2000) (Cramton et al., 2006,

PAUSEChapter 6).
A pause auction for m items has m stages. Stage 1 consists of having simulta-

neous ascending price open-cry auctions for each individual item. During this stage
the bidders can only place individual bids on items. At the end of this state we will
know what is the highest bid for each individual item and who placed that bid. In
each successive stage k = 2, 3, . . . ,m we hold an ascending price auction where the
bidders must submit sets of bids that cover all items but each one of the bids must
be for k items or less. The bidders are allowed to use bids that other agents have
placed in previous rounds. Also, any new bid set has to have a sum of bid prices
which is bigger than the currently winning bid set.

At the end of each stage k all agents know the best bid for every subset of size
k or less. Also, at any point in time after stage 1 has ended there is a standing bid
set whose value increases monotonically as new bid sets are submitted. Since in the
final round all agents consider all possible bid sets, we know that the final winning
bid set will be one such that no agent can propose a better bidset. Note, however,
that this bid set will generally not be X∗ since we are using ascending price auction
so the winning bid will be only slightly bigger than the second highest bid for the
particular set of items.

114 Chapter 7. Auctions

Figure 7.8: Graphical rep-
resentation of a distributed
winner determination prob-

lem. The circles represent
agents/items while the squares

represent combinatorial bids.

a

b

c

d

e10
5

1

8
3

9

6

2

In the general case, the pause auction has been shown to be envy-free in that
envy-free

at the conclusion of the auction no bidder would prefer to exchange his allocation
with that of any other bidder. However, it is not guaranteed to find the utilitarian
solution (7.1).

The pause auction makes the job of the auctioneer very easy. All it has to do
is make sure each new bidset adds up to a number that is bigger than the current
best as well as make sure that any bids an agent places that are not his do indeed
correspond to other agents’ bids. The computational problem shits from one of
winner determination by the auctioneer to one of bid generation by the prospective
buyer agents. Each agent must search over the space of all bid sets which contain at
least one of its bids. The search is made easier by the fact that the agent need only
consider the current best bids and that in stage k all bid sets must contain at least
one bid of size k since they would have otherwise been bid in a previous stage. The
pausebid algorithm uses the same branch and bound techniques used in centralized

pausebid
winner determination but expands them to include the added constraints an agent
faces. As such, the pausebid algorithm can be used to find the myopically optimal bid
for agents in the pause auction (Mendoza and Vidal, 2007). The research also reveals
that agents using pausebid reach the same allocation as the utilitarian solution,
assuming all the agents bid their true valuations, at least 95% of the time.

Another way of distributing the winner determination problem among the bid-
ders is provided by the Virtual Simultaneous Auction (VSA) (Fujishima et al.,

VSA 1999) which is based on market-oriented programming ideas (Wellman, 1996). The
vsa is an iterative algorithm where successive auctions for the items are held and
the bidders change their bids based on the last auction’s outcome. The auction
is guaranteed to find the optimal solution when the bidding terminates. Unfortu-
nately, there is no guarantee that bidding will terminate and experimental results
show that in most cases bidding appears to go on forever.

Distribute over Sellers

Another way to distribute the problem of winner determination is to distribute the
actual search for the winning bid set among the sellers. Imagine a distributed system
where each person that wants to sell an item runs an agent. The agent advertises
that the item is for sale. Every person who wants to place a, possibly combinatorial,
bid does so by telling all the agents present in the bid about it. After some time the
agents have gathered some bids and begin the clearing process. The set of agents
and bids can be visualized in a graph such as Figure 7.8.

Here we see that agent b has received three bids. One of them is a singleton bid
worth $2, the other two are combinatorial bids one of them for $8 and including
agent d and the other for $10 and including agents a and c. The problem we face is
how can the agents a–e determine the set of winning bids.

The simplest solution is to do a complete search via sequentialized ordering. In

7.3. Combinatorial Auctions 115

this method we use the same search tree as before but instead of implementing it
centrally we pass messages among the agents. Agent 1 handles the top level of the
tree. It tentatively sets one of its bids as cleared and sends a message to agent 2.
In this way, each agent (roughly) handles one level of the tree. Note the agents are
sequentialized so there is no parallelism, even though it is distributed.

Another option is to partition the problem into smaller pieces then have sets of
agents to a complete search via sequentialized ordering on each of the parts. That
is, we first partition the set of agents then do a complete search on each subset.
This method means that each subset works in parallel. However, if there is any bid
that contains agents from more than one subset then the solution found is no longer
guaranteed to be optimal.

Another option is to maximize the available parallelism by having the agents
do individual hill-climbing. Each agent starts by ordering all its bids based on

individual hill-climbing
their price divided by the number of agents in the bid under the assumption that
the agent gets 1/n of a bid that includes n agents. The agent picks the first bid in
the list (the highest valued) and tells all the other agents in the bid that it wants
to clear it. If the agent receives similar messages from all the agents in the bid
this means that they all wanted to clear it so the bid is considered cleared and all
the agents in it are removed from the protocol. The remaining agents repeat the
same process with their next highest bid and so on until they run out of bids. This
algorithm is guaranteed to terminate but will only find, at best, a local optima.

Winner Determination as Constraint Optimization

It is interesting to note that we can reduce the winner determination problem to a
constraint optimization problem as described in Chapter 2.2 in two different ways.
One way is to let the variables x1, . . . , xm be the items to be sold and their domains
be the set of bids which include the particular item. That is, each item k is repre-
sented by a variable xk with domain Dk which contains all the bids that involve k.
The constraints are given by the bids. Every bid is replaced with a constraint which
returns the value of the bid if all the items in the bid have a value equal to that
bid. That is, if all the items are cleared for that bid/constraint then that constraint
returns its value, otherwise the constraints returns a value of zero. In this problem
we now want to maximize the value returned by the constraints.

We can also reduce the winner determination problem by letting the variables
be the bids themselves with binary domains which indicate whether the bid has
been cleared or not. We then need two sets of constraints. One set of constraints
has to be generated such that they give a very large penalty if any two bids with
items in common have been cleared, so as to make sure that never happens. The
other set simply gives a value for every cleared bid equal to the value of that bid.

Since both of these are standard constraint optimization problems we can use
the algorithms from Chapter 2.2 to solve them in a distributed manner. However,
as those algorithms are generic, it seems likely that they will not perform as well as
the specialized algorithms.

7.3.3 Bidding Languages

We have thus far assumed that each buyer can submit a set of bids, where each bid
b specifies that he is willing to pay bvalue for the set of items bitems. Implicit in the
set of bids is the fact that the agent is also willing to accept winning two or more
of his bids. That is, if b and b′ are two bids for non-overlapping sets of items then
any agent that places them should also be happy to win both bids. This bidding
language is known as or bids, because agents can place multiple atomic bids and

or bids
atomic bidsthey can win any feasible combination of the bids they submit. That is, the agent

expresses his valuation as b1 or b2 or. . . or bk.
A limitation of or bids is that they cannot represent sub-additive valuations.

For example, a sub-additive valuation arises if you have a value of 10 for a red hat
and 10 for a blue hat but together value them at 11 because you really only need

116 Chapter 7. Auctions

one hat. In this scenario if you placed the individual bids as or bids it could be that
you end up paying 10 for both hats. We thus say that or bids are not a complete
bidding language since they cannot represent all possible valuations.

Xor bids, on the other hand, can represent all possible valuations. An xor bid
Xor bids takes the form of a series of atomic bids joined together by exclusive-or operations:

b1 xor b2 xor. . . xor bk. This bid represents the fact that the agent is willing to
win any one of the bids, but not more than one. Thus, you can use it to place a bid
that says you are willing to pay 10 for a red hat or 10 for a blue hat or 11 for both
but want to buy at most one of them.

One problem with xor bids is that they can get very long for seemingly common
valuations that can be more succinctly expressed using the or bids. For example,
say an agent has a purely additive valuation function over a set of items, that is if
s = s′∪s′′ then v(s) = v(s′)+v(s′′). This agent could have expressed this valuation
by placing an or bid where each atomic bid was just for one item. Implicit in this
bid is the fact that the agent would be willing to accept any subset of the items as
long as he gets paid the sum of the individual valuation. If the same agent had to
place an xor bid it would have to place an atomic bid for every subset of items,
and there are 2|s| such subsets.

Another practical problem with xor bids is that most of the winner determina-
tion algorithms are designed to work with or bids. The problem can be solved by
adding dummy items to or bids, these bids are known as or∗ bids. For example,

or∗ bids if an agent wants to place a bid for item a and b, but not both, it could generate a
dummy item d and place an or bid for items {a, d} and {b, d}. This way the agent
guarantees that it will not win both a and b. or∗ combines the completeness of xor
bids with the succinctness of or bids without adding too many new dummy items.
In fact, any bid that can be expressed by or or xor using x atomic bids can be
represent using an or∗ bids with at most x2 dummy items (Nisan, 2000). Thus, all
the winner determination algorithms we have studied can also be used with xor
bids as long as you first convert them to or∗ bids.

7.3.4 Preference Elicitation

We can also try to reduce the amount of information the bidders must supply by
trying to only ask them about those valuations that are important in finding the
utilitarian solution (Hudson and Sandholm, 2004). This can best be achieved in the
common case of free disposal where there is no cost associated with the disposal

free disposal
of an item, that is, if S ⊆ T then v(S) ≤ v(T). For example, if we know that an
agent values item a at 10 then we know that it must also value the set (a, b) at least
at 10. Similarly, if the agent values items (a, b) at 5 then we know that its value for
item a is at most 5.

Given free disposal, an auctioneer can incrementally explore a network like the
one in Figure 7.9 which shows all the possible subsets of items and associates with
each one a upper bound (ub) and a lower bound (lb) on the valuation that the
agent has for that particular set of items. The directed edges indicate which sets
are preferred over other ones. For example, the agent will always prefer the set
{a, b, c} over the set {a, b} and even, transitively, over the set {a}. The graph also
makes it easy to see how the auctioneer can propagate the bounds he learns on one
set to the others. Namely, the lower bounds can be propagated upstream and the
upper bounds can be propagated downstream. For example, in the figure there is a
lower bound of 5 the set {b}, knowing this the auctioneer can immediately set the
lower bounds of {b, c} and {a, b, c} to 5. Similarly, the upper bound of 9 for the set
{a, c} can be propagated down to {a}, {c}, and ∅. Note also that if the agent tells
the auctioneer its exact valuation for a particular set then the auctioneer will set
both the upper and lower bounds of that set to the given value.

The goal of an elicitation auctioneer is to minimize the amount of questions that
it asks the bidders while still finding the best allocation. If we limit the auctioneer
to only asking questions of the type “What is your nth most preferred set?” then

7.3. Combinatorial Auctions 117

{a, b, c}
ub=? lb=?

{a, b}
ub=? lb=?

{a, c}
ub= 9 lb=?

{b, c}
ub=? lb=?

{a}
ub=? lb=?

{b}
ub=? lb= 5

{c}
ub=? lb=?

∅
ub=? lb=?

Figure 7.9: Constraint network
for determining an agent’s val-
uation. Directed edges indicate
preferred sets.

par()
1 fringe ← {{1, . . . , 1}}
2 while fringe 6= ∅
3 do c← first(fringe)
4 fringe ← rest(fringe)
5 successors ← children(c)
6 if feasible(c)
7 then pareto-solutions ← pareto-solutions ∪ c
8 else for n ∈ successors
9 do if n /∈ fringe ∧un-dominated(n, pareto-solutions)

10 then fringe ← fringe ∪n

children({k1, . . . , kn})
1 for i ∈ 1 . . . n
2 do c← {k1, . . . , kn}
3 c[i]← c[i] + 1
4 result ← result ∪ c
5 return result

Figure 7.10: The par al-
gorithm. The procedure
feasible({k1, . . . , kn}) asks
each bidder i for its ki most
valued set, if we haven’t asked
before. It uses these sets to
determine if, together, they
form a feasible allocation. The
children procedure returns
a set of possible solutions, by
adding 1 to each position in
{k1, . . . , kn}.

we will be unable to find the revenue maximizing allocation. However, we can still
find the Pareto optimal allocations.

The PAR algorithm, shown in figure 7.10, allows an elicitation auctioneer to
PAR algorithmfind a Pareto optimal solution by only using rank questions (Conen and Sandholm,

2002). It does this by incrementally building a solution lattice for the bidders. Fig-
ure 7.11 shows an example of a complete lattice for two bidders. The par algorithm
maintains a set variable, called the fringe, of possible Pareto optimal allocations. At
the first time step the auctioneer adds the solution {1,1} to the fringe, where {1,1}
represents the solution formed by using both agents’ most preferred solution. In
every succeeding step the auctioneer picks some solution from the fringe and asks
the agents for those sets, if it does not already know them. This communication
with the bidders occurs within the feasible procedure. In the example figure both
agents prefer the set {a, b} the most so they will both respond with this set. Since
the set of bids ({a, b}, {a, b}) is not feasible the algorithm checks to make sure that
each one of the children of {1,1}, in this case {1,2} and {2,1}, is not dominated
by any other allocation in the set pareto-solutions and adds it to the fringe if its
not already there. The algorithm continues in this way until the fringe is empty, at
that point the variable pareto-solutions contains all the Pareto allocations for the

118 Chapter 7. Auctions

Figure 7.11: Rank lattice.
The dots represent all possi-

ble allocations. Directed edges
represent Pareto dominance.

Grey dots are infeasible while
black dots are feasible alloca-

tions. The par search starts
at the top rightmost point

and stops when it has identi-
fied the complete Pareto fron-

tier of feasible allocations—
the larger black dots. vi

vj

1 2 3 4 5 6

1

2

3

4

{a, b}{a}{b}∅

{a, b}

{a}

{b}

∅

Figure 7.12: The ebf algo-
rithm. feasible(d) returns

true if d is a feasible alloca-
tion. pareto-solution(M)

returns one allocation from M
which is not Pareto-dominated
by any other allocation in M .

ebf()
1 fringe ← {{1, . . . , 1}}
2 if | fringe | = 1
3 then c← first(fringe)
4 else M ← {k ∈ fringe | v(k) = maxd∈fringe v(d)}
5 if |M | ≥ 1 ∧ ∃d∈Mfeasible(d)
6 then return d
7 else c← pareto-solution(M)
8 if feasible(c)
9 then return c

10 successors ← children(c)
11 for n ∈ successors
12 do if n /∈ successors
13 then fringe ← fringe ∪{n}
14 goto 2

problem.
Since the par algorithm does not ask the agents for their valuation values it

cannot determine which one of the Pareto allocations is the utilitarian allocation.
Of course, once we start asking for valuations we have a better idea of which bids
will likely be part of the utilitarian allocation, namely those sets that have the
highest value per item.

The efficient best first (ebf) algorithm performs a search similar to the one
efficient best first

that par implements but it also asks for the values of the sets and always expands
the allocation in the fringe which has the highest value (Conen and Sandholm,
2002). Figure 7.12 shows the algorithm. This algorithm will find the utilitarian
allocation.

Unfortunately, both par and ebf have worst case running times that are expo-
nential in the number of items. They also perform rather poorly in practice. par
does not make any effort at trying to pick a item set to ask about, it simply chooses
randomly, so its bad performance is not surprising. ebf’s elicitation strategy has
also been shown to perform poorly in experiments—it asks too many questions. Its
performance also degrades as more agents are added.

A more general framework for elicitation is to maintain a set of allocations
which are potentially optimal. Initially, this set would contain all allocations in the
general case. In cases where we can assume some structure for the value function,
such as free disposal, then it contains all those allocations that are not dominated
by another. The elicitation algorithm can then choose one allocation from this set
and ask the agents their values for the sets they receive in that allocation. These

7.3. Combinatorial Auctions 119

values can then be propagated to other sets and a new allocation chosen (Conen
and Sandholm, 2001b; Conen and Sandholm, 2001a).

Within this general framework there are various elicitation strategies we could
try. The simplest one is to randomly choose an allocation from the set. This tech-
nique has been shown to require a number of elicitations that is proportional to n2m

where n is the number of agents and m is the number of items. Another strategy
is to choose the candidate with the highest lower bound value on the expectation
that a candidate with a higher value is more likely to be the optimal choice, or at
least will need to be eliminated from competition. Experiments have shown that
this strategy performs better than random elicitations.

7.3.5 VCG Payments

vcg payments, which we will see in Chapter 8.2, can be applied to combinatorial
auctions (MacKie-Mason and Varian, 1994). In a vcg combinatorial auction the bid
set with maximum payment is chosen as the winner but the bidders do not have to
pay the amounts they bid. Instead, each bidder pays the difference in the total value
that the other bidders would have received if he had not bid (and the best set of bids
was chosen from their bids) minus the total value the other bidders receive given
his bid. Each bidder thus get a payment that is proportional to his contribution
to everyone else’s valuation. This has the desirable effect of aligning the bidders’
incentives with the utilitarian allocation and thus eliminating the incentive to lie
about their true valuation. However, it increases the computational requirements
as we now have to also solve a winner determination problem for every subset of
n − 1 agents in order to calculate the payments. That is, VCG payments increase
the work by a factor of n, where n is the number of agents.

Exercises

7.1 The branch and bound algorithm for the branch on bids search tree, seen in
figure 7.6, does not specify in which order the bids should be searched. Give
a item heuristic for this ordering and explain why it should, on average, help
find a solution quicker than expanding bids in a random order.

7.2 What is the set of winning bids given the following bids?

Price Bid items

$1 Beast Boy
$3 Robin
$5 Raven, Starfire
$6 Cyborg, Robin
$4 Cyborg, Beast Boy
$3 Raven, Beast Boy

7.3 Show how we can reduce the problem of winner determination in a combina-
torial auction to a constraint optimization problem.

7.4 Can the problem of winner determination in a combinatorial auction be re-
duced to a constraint satisfaction problem? Show your proof.

7.5 You are given a painting to sell at an auction and wish to maximize its sale
price. What type of auction should you use? Explain.

7.6 In Chapter 6.5 we mentioned the postman problem. How can the postmen use
a combinatorial auction to solve their problem? Explain how the bids are to
be generated.

7.7 Why is a branch on bids search faster than a branch on items search for winner
determination in combinatorial auctions?

120 Chapter 7. Auctions

7.8 In a combinatorial auction with 50 items and using a computer that takes 1
millisecond to explore each bidset, what is an upper bound on the amount of
time it would take to find a solution to the winner determination problem?

7.9 The winner determination problem in combinatorial auction seeks to maximize
revenue, that is, maximize the amount paid by the buyers. Provide three
reasons or situations in which this solution might not be the most desirable
on.

Chapter 8

Voting and Mechanism Design

Once you have a multiagent system composed of autonomous locally-aware agents,
you will often desire a way to aggregate their knowledge for making a system-wide
decision. That is, you will want to ask them to vote on some issue. Unfortunately,
there are many different voting mechanisms, each one of which might lead to differ-
ent answers. More importantly, it could be that selfish agents do not want to vote
their true preferences. They might prefer to lie, in the same way you might not vote
for your favorite political candidate if you think that she does not have any hope
of winning and, instead, you vote for your second most favorite candidate. In this
chapter we examine the problems with voting and mechanism design.

8.1 The Voting Problem

At first glance, the voting problem seems very simple. We ask all agents to proclaim
their preferences over a set of candidates and then tally these votes to find the most
preferred candidate. The problem comes if we want this result to match, in some
way, the agents’ preferences. It turns out that the common voting mechanisms all
fail to aggregate the voters’ preferences in some cases.

For example, figure 8.1 shows 15 mathematicians who are planning to throw a
party. They must first decide which beverage the math department will serve at
this party. There are three choices available to them: beer, wine, and milk. As the
figure shows, 6 mathematicians prefer milk over wine and wine over beer, 5 prefer
beer over wine and wine over milk and 4 prefer wine over beer and beer over milk.
We then need to determine which drink they will choose.

One option is to have a plurality vote where each one votes for their favorite
plurality vote

drink, the votes are tallied and the drink with the most votes is the winner. Under
this voting scheme beer would get 5 votes, wine 4, and milk 6. Therefore, the

Milk
Wine
Beer

Wine
Beer
Milk

Beer
Wine
Milk

Beer Wine Milk

Plurality 5 4 6
Runoff 5,9 4 6,6
Pairwise Beer-Milk Beer-Wine, Wine-Milk 0 Figure 8.1: Fifteen mathemati-

cians trying to decide whether
they should buy beer, wine, or
milk.

121

122 Chapter 8. Voting and Mechanism Design

mathematicians should clearly choose milk as the drink for the party.
Another option is to have a runoff election (primaries) then pick the two win-

runoff
ners and have another election with only those two (these technique can be easily
extended to any number of runoff elections). Under this scheme the first election
would lead to the same votes as before so the second election would consist of beer
and milk. With only these two candidates beer would get 9 votes while milk would
get 6 votes. Therefore, the mathematicians should clearly choose beer as the drink
for the party.

Yet another option is to hold three elections each one with only two candidates
(that is, implement all pairwise elections) and the candidate that wins the most

pairwise
elections is the chosen one. Under this scheme we would see that if beer and wine
are paired then wine wins, if beer and milk are paired then beer wins, and if wine
and milk are paired then wine wins. Wine wins two elections so it is the chosen one.
Therefore, the mathematicians should clearly choose wine as the drink for the party.
After realizing the complexity of this problem the mathematicians wisely decide to
give up and have everyone bring their own drink.

8.1.1 Possible Solutions

We, on the other hand, will not give up that easily. We want to clearly define the
best solution. Specifically, we want a fair solution. But, it is not clear what fairness
means in this situation. One way to approach the fairness problem is to require
symmetry. There are two different types of symmetry that we can identify in this

symmetry
problem.

• Reflectional symmetry: If one agent prefers A to B and another one prefers B
to A then their votes should cancel each other out.

• Rotational symmetry: If one agent’s preferences are A,B,C and another one’s
are B,C,A and a third one prefers C,A,B then their votes should cancel out.

If we look back at the three types of schemes presented in the previous section we
notice that the plurality votes violates reflectional symmetry since, in the example
from figure 8.1, there are 8 agents that prefer beer over milk and wine over milk, but
only 6 that have the opposite preferences, and yet milk wins. Similarly, since the
runoff election is just a series of plurality votes it also violates reflectional symmetry.
It has also been shown that pairwise comparison violates rotational symmetry. In
the example we can take one agent from each of the three groups and these three
agents cancel each other’s votes, so we can eliminate them. We can do this four
times and end up with two agents with preferences milk, wine, beer and one agent
with preference of beer, wine, milk. A plurality vote over these would lead to milk
as the winner while the pairwise vote led to wine being the winner.

Jean-Charles de Borda.

–.

Thus, none of the previous voting schemes satisfy both forms of symmetry. But
there exists one voting mechanism which does satisfy them. It is known as the
Borda count and it works as follows:

Borda count

1. With x choices, each agent awards x to points to his first choice, x− 1 points
to his second choice, and so on.

2. The candidate with the most points wins.

The Borda count satisfies both reflectional and rotational symmetry. It is most
useful when there are many candidates and we want to choose the best one by
taking into account all agents’ knowledge, equally. With the Borda count we do not
have to worry about a minority winning the election because the majority is divided
among a small number of choices.

Now that you understand the intuitions behind the voting problem, we give a
formal presentation of the problem.

8.1. The Voting Problem 123

Definition 8.1 (Voting Problem). We are given set of agents A and a set of
outcomes O. Each agent i ∈ A has a preference function >i over the set of outcomes.
Let >∗ be the global set of social preferences – what we think the final vote should
reflect.

Using this notation we can clearly specify the kind of >∗ that we would like.
Namely, we are probably interested in a > ∗ that is efficient, can be calculated, and
is fair to everyone. After thinking about it for some time, you would probably come
up with a set of voting conditions similar to the following.

Definition 8.2 (Desirable voting outcome conditions). A voting protocol is desir-
able if it obeys the following conditions:

1. >∗ exists for all possible inputs >i,

2. >∗ exists for every pair of outcomes,

3. >∗ is asymmetric and transitive over the set of outcomes,

4. >∗ should be Pareto efficient. That is, if all agents prefer Beer over Milk then
>∗ should also prefer Beer over Milk.

5. The scheme used to arrive at >∗ should be independent of irrelevant alterna-
tives. That is, if in one world all agents prefer Beer to Milk and in another
world all agents again prefer Beer to Milk then in both cases the rankings of
Beer and Milk should be the same, regardless of how they feel about Wine.

6. No agent should be a dictator in the sense that >∗ is always the same as >i,
regardless of the other >j.

Unfortunately, Arrow showed that no voting mechanism exists which satisfies
all these conditions.

Kenneth Joseph Arrow. –.

Nobel prize in Economics.

Theorem 8.1 (Arrow’s Impossibility). There is no social choice rule that satisfies
the six conditions (Arrow, 1951).

Specifically, we can show that plurality voting violates conditions 3 and 5 when
there are three or more candidates. Similarly, since runoff elections are just several
plurality votes they also violate conditions 3 and 5. Pairwise voting can violate
condition 5 as does the Borda count. We can show that the Borda count violates
condition 5 with a simple example. Say there are seven agents whose preferences
over choices a, b, c, d are as follows:

1. a > b > c > d

2. b > c > d > a

3. c > d > a > b

4. a > b > c > d

5. b > c > d > a

6. c > d > a > b

7. a > b > c > d

If we applied the Borda count to these agents we would find that c gets 20 points,
b gets 19, a gets 18, and d 13. As such, c wins and d comes out last. If we then
eliminate d we would then have the following preferences.

1. a > b > c

2. b > c > a

124 Chapter 8. Voting and Mechanism Design

Table 8.1: List of individual
desires for painting the house.

Name Wants house painted?

Alice Yes
Bob No
Caroline Yes
Donald Yes
Emily Yes

3. c > a > b

4. a > b > c

5. b > c > a

6. c > a > b

7. a > b > c

If we ran Borda on this scenario we would find that a gets 15 votes, b gets 14, and
c gets 13, so a wins. So, originally c wins and d comes out last but by eliminating
d we then get that a wins! This is a violation of condition 5.

8.1.2 Voting Summary

In practice we find voting mechanism often used in multiagent systems but without
much thought given to which one might be best. Thus, plurality vote is most often
used. In general, the Borda count should be the preferred voting mechanism as it can
effectively aggregate multiple disparate opinions, but it does have some drawbacks.
Namely, the Borda count requires the agents to generate a complete preference
ordering over all items, which could be computationally expensive. For example, if
each choice is an allocation of packages that the agent must deliver then the agent
must solve a traveling salesman problem for each choice in order to determine how
much it would cost him to deliver all those packages. One could try to reduce these
costs by implementing a limited version of the Borda count where instead of voting
for all choices the agents limit themselves to voting for only their best k options,
for some small number k.

8.2 Mechanism Design

Mechanism design asks how we can provide the proper incentives to agents so that
we can aggregate their preferences correctly. The mechanism design problem has
been studied in Economics for some time. It is and interesting to us because it
maps very well to open multiagent systems with selfish agents. In this chapter we
present the standard mechanism design problem as studied in Economics as well
as the distributed mechanism design extension which is an even better model for
many multiagent system design problems.

8.2.1 Problem Description

Alice lives in a house with four other housemates. They are thinking about paying
someone to paint the exterior of their house and have decided to hold a vote where
everyone will vote either Yes, if they want the house painted, or No if they don’t.
The votes will be public and the set of people who vote for painting will share
equally in the cost of the painters, as long as two or more people vote Yes. The
people who voted against painting will pay nothing. We note that, since the paint
covers the whole outside of the house everyone will be able to enjoy the new cleaner
house. Each person knows whether or not they want the house to be painted. Their
desires are shown in Table 8.1.

8.2. Mechanism Design 125

i θi vi(Paint, θi) vi(NoPaint, θi)

Alice WantPaint 10 0
Bob DontWantPaint 0 0
Caroline WantPaint 10 0
Donald WantPaint 10 0
Emily WantPaint 10 0

Table 8.2: Values for the
house painting problem where
O = {Paint,NoPaint}
and the agents are either
of type WantPaint or type
DontWantPaint.

Alice wants the house painted, but lets assume that she does not want to pay
for it. She realizes that if only two people voted yes that the house will be painted.
As such, she has an incentive to vote against painting – that is, lie about her true
preferences – in the hope that some other two agents will vote for it and the house
will get painted anyway. This means that Alice’s strategy will be to try to determine
what the others are likely to vote and see if there are enough Yes votes so that she
can safely lie. Unfortunately, all that scheming is very inefficient from a system’s
perspective. It would be much easier if everyone wanted to tell the truth.

We would like to create a protocol where these types of incentives do not exist.
That is, we would like for all agents to want to vote truthfully rather than lie or
try to find out how the other agents are going to vote. If we could do that then the
agents would not waste their resources trying to beat the system and instead use
them to work for the system.

Mechanism design (Mas-Colell et al., 1995, Chapter 23) studies how private
information can be elicited from individuals. It tells us how to build the proper
incentives into our protocols such that the agents will want to tell the truth about
their preferences. It also tells us about some circumstances when this is impossible.

More formally, we define a mechanism design problem as consisting of a set
mechanism design

of agents with the following properties.

• Each agent i has a type θi ∈ Θi which is private. That is, only the agent
type

knows its type, no one else does.

• We let θ = {θ1, θ2, . . . , θA} be the set of types.

• The mechanism g we are to implement will map from the set of agents’
mechanism

actions to a particular outcome o ∈ O.
outcome

• Each agent i receives a value vi(o, θi) for outcome o.

• The social choice function f : θ → O tells us the outcome we want to
social choice function

achieve.

For example, the social choice function

f(θ) = arg max
o∈O

n∑
i=1

vi(o, θi) (8.1)

is the social welfare solution. It tries to maximize the sum of everyone’s utility.
You can, however, choose to implement a different social choice function. Other
popular choices include minimizing the difference in the agents’ utility, maximizing
the utility of the agent that receives the highest utility, and the paretian social

paretian
choice function f such that for all θ there is no o′ 6= o = f(θ) such that some agent i
gets a higher utility from o′ than it would have received under f(θ). That is, in the
paretian social choice function f there does not exist an outcome o′ such that there
is some agent i for which vi(o′, θi) > vi(f(θ), θi) and for all i vi(o′, θi) ≥ vi(f(θ), θi).

Note also that since the agent’s type are usually fixed – an agent cannot change
its true type, only lie about it – then the vi usually only needs to be defined for the
agent’s particular θi.

If we apply this notation to the example from Table 8.1 we get the values shown
in Table 8.2. We have that Θ = {WantPaint,DontNeedPaint} since there are

126 Chapter 8. Voting and Mechanism Design

only two types of agents: those that want the house painted and those that think
it does not need paint. Also, O = {Paint,NoPaint} since either the house gets
painted or it doesn’t. Notice that we had to add some arbitrary number for the
agents’ utilities for all possible actions. We decided that the agents that want the
house painted would get a value of 10 from seeing it painted and 0 if it does not get
painted while those who think the house is fine as it is get a value of 0 either way.
Lets further assume that we want to maximize social welfare. That is, our social
choice function is (8.1). Finally, we assume that the cost of painting the house is 20.
We now face the problem of designing a protocol that will decide whether or not to
paint the house and how to pay for it.

One possible way to solve this problem is to let all the agents vote Yes or No.
We then count the votes and if a majority voted for painting the house then the
house will be painted and the cost (20) will be divided evenly among the 5 agents.
That is, each agent will have to pay 4 no matter what. This scheme works fine for
all agents except for Bob who did not want the house painted and must now pay 4.
We are imposing a tax on Bob for something he does not want. This might not be
a desirable solution.

Another way is to let everyone vote Yes or No and then split the cost of painting
the house among those who voted Yes, as we discussed earlier. This seems fairer but
it has the problem that it gives all the agents, except Bob, and incentive to lie, as we
explained before. They would want to lie in the hopes that someone else would vote
Yes and spare them having to pay for it. In general, we are looking for a mechanism
which implements the social choice function. This idea can be formalized as follows:

Definition 8.3 (g Implements f). A mechanism g : S1×· · ·×SA → O implements
implements

social choice function f(·) if there is an equilibrium strategy profile (s∗1(·), . . . , s∗A(·))
of the game induced by g such that

∀θ g(s∗1(θ1), . . . , s∗A(θA)) = f(θ1, . . . , θA)

where si(θi) is agent i’s strategy given that it is of type θi.

The definition might sound a little bit circular but it isn’t. Say you start out
with a set of agents each one with a type – which you don’t know about – and
you tell them that you are going to use g(·) to calculate the final outcome. That
is, you tell them how the function g works. The agents will use their knowledge
of g to determine their best action and will take that action. You then input this
set of actions into g to come up with the outcome. If the outcome is the same as
f(θ1, . . . , θA) then you just implemented f . As you can see, the tricky part is that
you have to pick g such that it will encourage the agents to take the appropriate
actions.

Another point of confusion might be that we have changed from types to ac-
tions. In the previous examples the agents actions – their votes – where merely the
revelation of their types. That is, there was a one-to-one mapping from types to
actions. However, in general this need not be the case. We could, for example, have
a system with 20 different types but only 2 possible actions.

We have also not defined what we mean by an “equilibrium strategy” as used in
Definition 8.3. As you will remember from Chapter 3, there are many equilibrium
concepts that can be applied to a game. The equilibrium we will concern ourselves
with is the dominant strategy equilibrium. A player has a dominant strategy (action)
if the agent prefers to use this strategy regardless of what anyone else will do. In
our mechanism design problem we formally define a dominant strategy as follows:

Definition 8.4 (Dominant Strategy Equilibrium). We say that a strategy profile
(s∗1(·), . . . , s∗A(·)) of the game induced by g is a dominant strategy equilibrium

dominant strategy
equilibrium

if for all i and all θi,

vi(g(s∗i (θi), s−i), θi) ≥ vi(g(s′i, s−i), θi)

for all s′i ∈ Si and all s−i ∈ S−i.

8.2. Mechanism Design 127

We can now specialize Definition 8.3 for dominant equilibria.

Definition 8.5 (g Implements f in Dominant Strategies). A mechanism g : S1 ×
· · ·×SA → O implements social choice function f(·) in dominant strategies

implements social
choice function f(·) in

dominant strategies

if there is a dominant strategy equilibrium strategy profile (s∗1(·), . . . , s∗A(·)) of the
game induced by g such that g(s∗1(θ1), . . . , s∗A(θA)) = f(θ1, . . . , θA) for all θ ∈ Θ.

Before we go into how to find this magical g lets explore some simplifications of
the problem. The first simplification is one we made in our first example. Namely,
that the agents’ strategies correspond to the revelation of their types. That is, lets
assume that the agents’ actions are simply type revelations. The only thing an
agent can do is say “I am of type θx”. Of course, he could be lying when he makes
this statement. We call this a direct revelation mechanism because the agents

direct revelation
mechanism

directly reveal their types rather than taking an action that might or might not be
correlated to their type.

In these cases we would want to design a mechanism g which implements a
social choice function f and encourages all agents to tell their true type. This might
or might not be possible for a particular f . If it is possible then we say that f is
strategy-proof.

Definition 8.6 (Strategy-Proof). The social choice function f(·) is truthfully
implementable in dominant strategies (or strategy-proof) if for all i and θi strategy-proof
we have that s∗i (θi) = θi is a dominant strategy equilibrium of the direct revelation
mechanism f(·). That is, if for all i and all θi ∈ Θi,

vi(f(θi, θ−i), θi) ≥ vi(f(θ̂i, θ−i), θi)

for all θ̂i ∈ Θi and all θ−i ∈ Θ−i.

That is, the value that each agent receives under the outcome prescribed by the
social choice function when all tell the truth is bigger than or equal to the value
it gets if it lied about its type. Notice how we have plugged in f directly as the
mechanism instead of using g, in other words g = f . As you might guess, this would
make g trivial to implement because we are given f . For example, if I ask you to
find a mechanism that implements social function f and you look at f and realize
that it is strategy-proof then all you have to do is directly use f . That is, you would
ask the agents for their types, they would all tell the truth because telling the truth
is their dominant strategy, you would then plug these values into f and out would
come the desired outcome.

These strategy-proof social choice functions make it trivial to find a g that
implements them, namely g = f . Still, we might worry that the particular f we
have been given to implement is not strategy-proof but there might exist some
mechanism g which implements f in dominant strategies. That is, g lets the agents
take some action, which might be different from revealing their type, and uses these
actions to come up with the same outcome that f would have resolved using the
agents true types. Furthermore, the actions the agents take are dominant given that
they know about g.

Fortunately, there is no need to worry about finding such g as it has been proven
that no such g exists. This is known as the revelation principle.

revelation principle

Theorem 8.2 (Revelation Principle). If there exists a mechanism g that imple-
ments the social choice function f in dominant strategies then f is truthfully im-
plementable in dominant strategies.

That is, if there exists a complicated mechanism that implements a given social
function then there is also a much simpler mechanism which just asks the agents to
reveal their types. Of course, this simpler mechanism might have other problems,
as we will see.

128 Chapter 8. Voting and Mechanism Design

An Example Problem and Solution

Let’s now use all this notation in an example. Imagine that you want to sell an item.
There are a bunch of prospective buyer agents. You want to sell it to the agent that
wants it the most, but you can’t trust them to tell you the truth. More formally,
we can describe this problem as consisting of the following variables.

• θi ∈ <: types are the valuations.

• o ∈ {1, . . . , n}: index of agent who gets the item.

• vi(o, θi) = θi if o = i, and 0 otherwise.

• f(θ) = arg maxi(θi)

• Each agent gets a pi(o) so that ui(o, θi) = vi(o, θi) + pi(o).

Given this problem we must now try to figure out how to implement the pay-
ments p as well as how to determine the outcome given the agents’ reported types,
both of these together constitute the desired mechanism g. That is, as with most
research in mechanism design, we are only interested in mechanism that involve
paying or taxing the agents some amount of money in order to change their utility
valuation.

After thinking about this problem for a while, you suddenly realize that this is
a problem you have already seen. The solution is to use a Vickrey auction. Set p(o)
such that the agent who wins must pay a tax equal to the second highest valuation.
No one else pays or receives anything. This mechanism results in the agents having
final utilities as follows.

ui(o, θi) =
{
θi −maxj 6=i θj if o = i

0 otherwise.

That is, we define g such that it returns an outcome o which contains the index
of the agent that sent you the highest bid. The g also charges this winning agent
an amount equal to the second highest bid and charges everyone else 0.

In fact, we can use the notation we have set up to prove that telling the truth is
the dominant strategy in this scenario which, along with the fact that we implement
the social choice function, makes the Vickrey auction strategy-proof for this social
choice function.

Truth-Telling is Dominant in Vickrey Payments Example. We can prove that telling
the truth is the dominant strategy by following these steps.

1. Let bi(θi) be i’s bid given that his true valuation is θi.

2. Let b′ = maxj 6=i bj(θj) be the highest bid amongst the rest.

3. If b′ < θi then any bid bi(θi) > b′ is optimal since

ui(i, θi) = θi − b′ > 0

4. If b′ > θi then any bid bi(θi) < b′ is optimal since

ui(i, θi) = 0

5. Since we have that if b′ < θi then i should bid > b′ and if b′ > θi then i should
bid < b′, and we don’t know b′ then i should bid θi.

8.2. Mechanism Design 129

Name vi(o, θ̃) vi(o, θ) +
∑
j 6=i vj(θ̃)

Alice 10− 20
4 = 5 5 + 15 = 20

Bob 0− 0 = 0 0 + 20 = 20

Caroline 10− 20
4 = 5 5 + 15 = 20

Donald 10− 20
4 = 5 5 + 15 = 20

Emily 10− 20
4 = 5 5 + 15 = 20

Table 8.3: Groves-Clarke pay-
ments for house painting as-
suming that all agents tell the
truth.

The Groves-Clarke Mechanism

Theodore Groves.

We have just shown how to check that a mechanism implements a particular social
choice function can be truthfully implemented in dominant strategies. However,
we did not show how we came up with the mechanism itself or how we decided
to use Vickrey payments. We would like a general formula that can be used to
calculate the agents’ payments no matter what social choice function is given to us.
Unfortunately, such a formula does not appear to exist.

However, if we instead assume that the social choice function is the social welfare
solution and further assume that the agents have quasilinear preferences then we
can use the Groves-Clarke mechanism to calculate the desired payments. Agents

Groves-Clarke
mechanism

with quasilinear preferences are those with utilities in the form ui(o, θi) = vi(o, θi)+
pi(o). Formally, the Groves-Clarke mechanism is defined as follows:

Theorem 8.3 (Groves-Clarke Mechanism). If we have a social choice function

f(θ) = arg max
o∈O

n∑
i=1

vi(o, θi)

then calculating the outcome using

f(θ̃) = arg max
o∈O

n∑
i=1

vi(o, θ̃i),

where θ̃ are reported types, and giving the agents payments of

pi(θ̃) =
∑
j 6=i

vj(f(θ̃), θ̃j)− hi(θ̃−i), (8.2)

where hi(θ−i) is an arbitrary function, results in a strategy-proof mechanism
(Groves, 1973; Clarke, 1971)..

Edward H. Clarke. –.

Notice that the payments that i receives are directly proportional to the sum of
everybody else’s value. This is the key insight of the Groves-Clarke mechanism. In
order to get the agents to tell the truth so that we may improve the social welfare we
must pay the agents in proportion to this social welfare. Another way to look at it,
perhaps a bit cynically, is to say that the way to get individuals to care about how
everyone else is doing is to pay them in proportion to how everyone else is doing.
For example, companies give shares of their company to employees in the hope that
this will make them want the company as a whole to increase its profits, even if
it means they have to work longer or take a pay-cut. In effect, the Groves-Clarke
mechanism places the social welfare directly into the agent’s utility function.

Lets apply the Groves-Clarke Mechanism to the house painting example from
Table 8.2. Remember that the second solution we tried, where the cost of painting
was divided among those who voted to paint, was not strategy-proof. Perhaps we
can add Groves-Clarke payments to make it strategy-proof. To do this we must first
re-evaluate the agents’ value which will be decreased from 10 since they might have

130 Chapter 8. Voting and Mechanism Design

Table 8.4: Groves-Clarke
payments for house paint-

ing assuming that Alice lies
and all others tell the truth.

Name vi(o, θ̃) vi(o, θ) +
∑
j 6=i vj(θ̃)

Alice 0− 0 = 0 10 + (10
3 · 3) = 20

Bob 0− 0 = 0 0 + (10
3 · 3) = 10

Caroline 10− 20
3 = 10

3
10
3 + (10

3 · 2) = 10

Donald 10− 20
3 = 10

3
10
3 + (10

3 · 2) = 10

Emily 10− 20
3 = 10

3
10
3 + (10

3 · 2) = 10

to pay for part of the painting, if they voted yes, and then calculate the agents’
payments using Theorem 8.3. The set of payments the agents would receive if they
all told the truth is shown in Table 8.3. As you can see, all the agents get the same
utility (20) from telling the truth.

Now, what if Alice lied? Would she get a higher utility? Table 8.4 shows the
payments and utility values for the case where Alice lies and the rest tell the truth.
As you can see, Alice still gets the same 20 of utility. As such, she has nothing to gain
by lying (you should repeat these calculations for Bob to make sure you understand
how the equations are used). It is interesting to note how everyone else’s utilities
have dropped due to Alice’s lie. Of course Alice, being purely selfish, does not care
about this.

Finally, notice how the payments add up to 80 on the first example and 40 in
the second example. Where does this money come from? Note that we must give
the agents real money otherwise the mechanism does not work. We cannot simply
tell them to imagine we are giving them $20. What would be really nice is if some
of the agents payed us money and we payed some back to the other agents such
that the total amount we pay equals the total amount we receive. We would thus
achieve revenue equivalence. Unfortunately, as you have seen, the Groves-Clarke

revenue equivalence
mechanism is not revenue equivalent.

The Vickrey-Clarke-Groves Mechanism

Another well-known payment mechanism is Vickrey-Clarke-Groves, which is just
Vickrey-Clarke-Groves a small variation on Groves-Clarke but is closer to achieving revenue equivalence.

Theorem 8.4 (Vickrey-Clarke-Groves (vcg) Mechanism). If

f(θ) = arg max
o∈O

n∑
i=1

vi(o, θi)

then calculating the outcome using

f(θ̃) = arg max
o∈O

n∑
i=1

vi(o, θ̃i)

(where θ̃ are reported types) and giving the agents payments of

pi(θ̃) =
∑
j 6=i

vj(f(θ̃), θ̃j)−
∑
j 6=i

vj(f(θ̃−i), θ̃j) (8.3)

results in a strategy-proof mechanism.

VCG is almost identical to Groves-Clarke except that the payments are slightly
different. The payments in vcg measure the agent’s contribution to the whole, what
some call the “wonderful life” utility, which we saw in Chapter 5.6. You might have
seen that old Frank Capra film “It’s a Wonderful life”. In it, George Bailey gets a
chance to see how the world would have been had he never existed. He notices that

8.2. Mechanism Design 131

Name vi(o, θ̃)
∑
j 6=i vj(f(θ̃−i), θ̃j)

∑
j 6=i vj(f(θ̃), θ̃j)−

∑
j 6=i vj(f(θ̃−i), θ̃j)

Alice 10− 20
4 = 5 (10− 20

3) · 3 = 10 15− 10 = 5

Bob 0− 0 = 0 (10− 20
4) · 4 = 20 20− 20 = 0

Caroline 10− 20
4 = 5 (10− 20

3) · 3 = 10 15− 10 = 5

Donald 10− 20
4 = 5 (10− 20

3) · 3 = 10 15− 10 = 5

Emily 10− 20
4 = 5 (10− 20

3) · 3 = 10 15− 10 = 5

Table 8.5: vcg payments for
house painting assuming Alice
tells the truth.

the social welfare in the world without him is lower than in the world with him in it.
As such, he calculates that his existence has had a positive effect on social welfare
and thus decides not to end his life, which makes us conclude that he wanted to
increase social welfare. Nice guy that George.

That is exactly what the vcg payments calculate. In the first term of (8.3) the
f(θ̃) captures the outcome had agent i not existed. The first term thus captures the
social welfare had i not existed while the second term captures the social welfare
with i in the picture. We point out that, in practice, f(θ̃) is very hard to compute.
For many multiagent systems it is not clear what would happen if we took out one
of the agents – imagine a soccer team without a player, or an assembly line without
a worker, or workflow without an agent.

The advantage of vcg over Groves-Clarke is that it results in a lower net revenue
gain or loss. We can see this if we re-calculate the payments for the house painting
example, as seen in Table 8.5. The payments in this case add up to 20, as compared
with 40 and 80 for the Groves-Clarke payments. Of course, 20 is not 0 so we have not
yet achieved total revenue equivalence. The research literature tells us that revenue
equivalence for many specific cases is impossible to achieve.

The main problem we face when trying to use both Groves-Clarke and vcg
payments is that calculating these payments takes exponential time on the number
of agents. This means that they can only be used when we have a small number of
agents. Still, you might consider approximations of these payments which can be
calculated quickly for your specific problem domain.

8.2.2 Distributed Mechanism Design

Computer scientists have taken the results from mechanism design and tried to ap-
ply them to multiagent systems problems, this required further specification of the
problem. The first extension to mechanism design that appeared was algorithmic
mechanism design which proposes that the mechanism should run in polynomial

algorithmic mechanism
design

time (Nisan and Ronen, 2001). These types of mechanism are sorely needed be-
cause the calculation of vcg and Groves-Clarke payments takes exponential time.
The second extension was distributed algorithmic mechanism design (damd)

distributed algorithmic
mechanism design

(Feigenbaum et al., 2001; Dash et al., 2003) which proposes that the computations
carried out by the mechanism should be performed by the agents themselves and
in polynomial time, with added limitations on the number of messages that can
be sent. Note that if the agents themselves are performing the calculations for the
mechanism then we must also guard against their interference with the calculation
of the outcome. This can be done either by design – for example, by encrypting
partial results – or by providing the agents with the proper incentives so they will
not want to cheat.

Thus far, damd algorithms have been almost exclusively developed for computer
network applications. Unlike traditional network research, these algorithms treat the
individual routers as selfish agents that try to maximize their given utility function.
That is, the Internet is no longer viewed as composed of dumb and obedient routers
but is instead viewed as composed of utility-maximizing autonomous entities who
control specific routers or whole sub-networks. It is interesting to not that while

132 Chapter 8. Voting and Mechanism Design

Figure 8.2: Example Inter-
domain routing problem.
The nodes represent net-

works. Each one shows
the cost it would incur

in transporting a packet
through its network. The

agents’ types are their costs.

1
θ1 = 5

2
θ2 = 2

3
θ3 = 4 4

θ4 = 1

5
θ5 = 2

6
θ6 = 3

this model is a much more faithful representation of the real Internet, network
researchers have largely ignored the fact that private interests exist in the Internet
and instead assume that all parties want to maximize the social welfare.

Figure 8.2 shows a sample inter-domain routing problem. In this problem each
node represents a computer network. The edges represent how these networks are
connected to each other. Each network is willing to handle packets whose source
or destination address is within the network. However, they are reticent to carry
packets that are just passing thru. Each network in the figure also shows the cost it
incurs in routing one of these passing-thru packets. These costs correspond to the
agents’ types. That is, only the agent knows how much it costs to pass a packet
across its network. We further assume that we know how much traffic will travel from
every start node to every destination node. The problem then is to find the routes for
each source-destination pair such that the costs are minimized. This is a mechanism
design problem which can be solved in a distributed manner (Feigenbaum et al.,
2005), as we now show.

We can formally define the problem as consisting of n agents. Each agent i knows
its cost to be θi. An outcome o of our mechanism design problem corresponds to a
set of routing rules for all source-destination pairs. That is, the outcome o should
tell us, for all i, j, which path a packet traveling from i to j should follow. The value
vi(o) that each agent receives for a particular outcome o is the negative of the total
amount of traffic that i must endure given the paths specified in o and the traffic
amounts between every pair.

The solution we want is then simply

f(θ) = arg max
o

∑
i

vi(o). (8.4)

Since this is the social-welfare maximizing solution we are free to use vcg payments
to solve the problem. Specifically, we can ask all agents to report their costs θ̃ and
then use (8.3) to calculate everyone’s payments thus ensuring that telling the truth is
the dominant strategy for all agents. Note that, in this case, calculating the outcome
given θ̃ amounts to calculating a minimum spanning tree for each destination node
j. The problem of finding the routes that minimize the sum of all costs has already
been solved, in a distributed manner, by the standard Internet Border Gateway
Protocol (bgp). The protocol works by propagating back the minimum costs to a

Border Gateway
Protocol

given destination. All agents tell each other their costs to destination. Each agent
then updates its cost to a destination by adding its own transportation costs. The
process then repeats until quiescence. The algorithm is, in fact, a variation on
Dijkstra’s algorithm for finding shortest paths in a graph (Dijkstra, 1959).

Note, however, that the payment calculation (8.3) requires us to find the sum
of everyone else’s valuation for the case where i does not exist, the second term in
(8.3). For this problem, eliminating i simply means eliminating all links to i. But,

8.2. Mechanism Design 133

it could be that the elimination of these links partitions the graph into two or more
pieces thereby making it impossible for traffic from some nodes to reach other nodes.
In such a case then it would be impossible to calculate the vcg payments. Thus,
we must make the further assumption that the network is bi-connected: any one

bi-connected
node can be eliminated and still every node can be reached from every other node.

We also note that the vcg payments can be broken down into a sum

pi(θ̃) =
∑
a,b

pi(a, b, θ̃), (8.5)

where pi(a, b, θ̃) is the payment that i receives for the traffic that goes from node a
to node b. This payment can be further broken down into its constituent vcg parts:
the value everyone else gets and the value everyone else would get if i did not exist.
We can find these by first defining the total cost incurred in sending a packet from
a to b. We let lowest-cost-path(a, b, θ̃) be the lowest cost path – a list of nodes – for
sending a packet from a to b given θ̃. The total cost associated with that path is
given by

cost(a, b, θ̃) =
∑

i∈lowest-cost-path(a,b,θ̃)

θ̃i, (8.6)

which is simply the sum of the costs in all the intervening nodes. We can then
determine that the payment that i gets is given by

pi(a, b, (̃θ)) = θ̃i − cost(a, b, θ̃i) + cost−i(a, b, θ̃i), (8.7)

where cost−i(a, b, θ̃i) is defined in the same as cost but for a graph without agent i.
Note how this payment equation is really just the vcg payments once again. The
first two terms capture the value that everyone else receives while the third term
capture the value that everyone else receives if i did not exist; since i does not exist
he does not contribute cost. The main difference is that the signs are reversed since
we are dealing with costs and not value.

We now note that since the payments depend solely on the costs of the lowest
cost path from i to j then some of these costs could be found by adding other costs.
For example, if the lowest cost path from i to j involves first going from i to a
directly and then taking the lowest cost path from a to j then the cost(i, j, θ̃) =
θ̃i + cost(a, j, θ̃). A careful analysis of these type of constraints leads us to deduce
that for all k ∈ lowest-cost-path(i, j, θ̃) where a is a neighbor of i, we have that:

1. If a is i’s parent in lowest-cost-path(i, j, θ̃) then pk(i, j) = pk(a, j).

2. If a is i’s child in lowest-cost-path(i, j, θ̃) then pk(i, j) = pk(a, j) + θ̃i + θ̃a.

3. If i is neither a parent or a child of i and k ∈ lowest-cost-path(a, j, θ̃) then
pi(i, j) = θ̃a + cost(a, j) = cost(i, j).

4. If i is neither a parent or a child of i and k 6∈ lowest-cost-path(a, j, θ̃) then
pk(i, j) = θ̃k + θ̃a + cost(a, j)− cost(i, j).

We can then build an algorithm where the agents send each other payment
tables and then update their own payment tables using the ones they received
along with the above equations. Figure 8.3 shows such an algorithm. All agents
start by executing the procedure initialize and then send handle-update to
their neighbors in order to get the process going. The algorithm has been shown to
converge to the true prices for agents.

Note that the calculation of lowest-cost-path is itself a distributed calculation
that is being carried out simultaneously by the bgp algorithm. This means that the
values of lowest-cost-path are also changing and, thus, might be incorrect. However,
it has been shown that the payment calculations will converge even in the presence
of such changes.

134 Chapter 8. Voting and Mechanism Design

Figure 8.3: Algorithm for cal-
culating vcg payments for the

inter-domain routing prob-
lem. i refers to the agent run-
ning the algorithm. All agents

start by executing initial-
ize and then send a handle-

update to all their neighbors.

initialize()
1 for j ← 1 . . . n � for each destination j
2 do calculate lowest-cost-path(i, j) and cost(i, j)
3 for k ∈ lowest-cost-path(i, j)
4 do pk[i, j]←∞

handle-update(a, j, cost-aj , path, payments)
� a is the agent sending the message (invoking this procedure).
� j is the destination node.
� cost-aj is the reported cost of sending a packet from a to j.
� path is a list of nodes on the lowest cost path from a to j.
� payments are the payments for each node on path.

1 modified ← false
2 if a ∈ lowest-cost-path(i, j) � Parent
3 then for k ∈ path
4 do if pk[i, j] > pk[a, j]
5 then pk[i, j]← pk[a, j]
6 modified ← true
7 elseif i ∈ lowest-cost-path(a, j) � Child
8 then for k ∈ {All but last item in path}
9 do if pk[i, j] > pk[a, j] + θ̃a + θ̃i

10 then pk[i, j]← pk[a, j] + θ̃a + θ̃i
11 modified ← true
12 else
13 t← position of last node for which path equals lowest-cost-path(i, j)
14 for k ∈ lowest-cost-path(i, j)[1 . . t]
15 do if pk[i, j] > pk[a, j] + θ̃a + cost-aj − cost(i, j)
16 then pk[i, j]← pk[a, j] + θ̃a + cost-aj − cost(i, j)
17 modified ← true
18 for k ∈ lowest-cost-path(i, j)[t+ 1 . .]
19 do if pk[i, j] > θ̃k + θ̃a + cost-aj − cost(i, j)
20 then pk[i, j]← θ̃k + θ̃a + cost-aj − cost(i, j)
21 modified ← true
22 if modified
23 then my-payments ← pk[i, j] for k ∈ lowest-cost-path(i, j)
24 for b is my neighbor
25 do b.handle-update(i, j, cost(i, j),

lowest-cost-path[i, j],my-payments)

8.2.3 Mechanism Design Summary

Mechanism design provides us with a solid mathematical framework for expressing
many multiagent design problems. Specifically, we can represent problems involv-
ing selfish agents who are intelligent enough to lie if it will increase their utility.
Furthermore, the Groves-Clarke and vcg payment equations give us a ready-made
solution for these problems. Unfortunately, this solution only works if we can imple-
ments payments and, even then, the payments are not revenue-neutral so we need
an infinite amount of cash to give the agents. Also, these solutions are centralized
in that all types are reported to a central agent who is then in charge of calculating
and distributing the payments.

Distributed mechanism design is a new research area: few effective algorithms
exist and many roadblocks are visible. Different approaches are being taken to over-
come these roadblocks. One approach is to extend the mechanism design problem
by defining trust-based mechanisms in which agents take into account the degree
of trust they have on each other when determining their allocations (Dash et al.,

8.2. Mechanism Design 135

2004). Another approach is to distribute the calculation of vcg payments by using
redundantly asking agents to perform sub-problems (Parkes and Shneidman, 2004)
and use encryption (Monderer and Tennenholtz, 1999).

Chapter 9

Coordination Using Goal and Plan Hierarchies

Goal, plan, and policy hierarchies have proven to be very successful methods for
coordinating agents. In these approaches we assume the existance of one of these
hierarchies and the problem then becomes that of determining which parts of the
hierarchy are to be done by which agents. In this setting we assume that the agents
are coopertive, that is, they will do exactly what we tell them to. The problem is
one of finding an good-enough answer.

Hierarchies like the ones we show here are a way to solve the problem of finding
an optimal policy in multiagent MDPs. That is, since the traditional mathemati-
cal tools for solving those problems are computationally intractable for real-world
problems, researchers hoping to build real-world systems have had to find ways to
add more of their domain knowledge into the problem description so as to make it
easier to find a solution. In general, the more we tell the agent about the world the
easier it is to solve the problems it faces. Unfortunately, if we want to tell the agent
more information about its domain we need more sophisticated data structures. In
this chapter we describe one of the most popular such data structures: tæms. Once
we have these new data structures we will generally need new algorithms which take
advantage of the new information. The algorithms used for tæms are captured in
the gpgp framework which we also discuss.

9.1 tæms

tæms is a language for representing large task hierarchies that contain complex
tæms

constraints among tasks. You can think of it as a data structure for representing very
complicated constraint optimization problems (Lesser et al., 2004). At its simplest,
tæms represents a goal hierarchy. As such, tæms structures are roughly tree-shaped.
The root is the top-level goals that we want the system to achieve. The children are
the sub-goals that need to be achieved in order for the top goal to be achieved—
a form of divide and conquer. The leafs of the tree are either goals that can be
achieved by a single agent or tasks that can be done by an agent. These goals and
tasks, however, might require the use of some resources or data. tæms represents
these requirements with an arrow from the data or resource to the goal.

Figure 9.1 shows a simple example tæms structure. It tells us that in order to
achieve goal G0 we must do G1 and G2 and G3. But, in order to achieve G3 we must
achieve either G23 or G31. Note also how G23 is a subgoal of both G2 and G3, which
makes this a graph instead of a tree. The bottom row shows two data elements and
two resources. Data elements are pieces of data that are needed in order to achieve
the goals to which they are connected. Resources are consumable resources that are
needed by their particular goals. The difference between data and resource is that a
piece of data can be re-used as many times as needed while resources are consumed
every time they are used and must therefore be replenished at some point. tæms
also allows one to annotate links to resources to show how much of the resource
is needed in order to achieve a particular goal. We can see that G1 requires data1

while G22 requires data1 and resource1.
Figure 9.1 also shows non local effects, namely the enables constraint. The

non local effects
directed link (in red) from G1 to G22 indicates that G1 enables G22 which means

137

138 Chapter 9. Coordination Using Goal and Plan Hierarchies

Figure 9.1: An example of
a simple tæms structure.

G0

G1 G2 G3

G21 G22 G23 G31

and

and or

data1 data2 resource1 resource2

enables

enables

quality:(.2,0)(.8,8)
cost:(1,0)

duration:(1,2)

q:(.1,0)(.9,5)
c:(1,10)
d:(.4,2)(.6,5)

Figure 9.2: Some of the qual-
ity accumulation functions

available for a tæms structure.

Function Description

qmin minimum quality of all subtasks
qmax maximum quality of all subtasks
qsum aggregate quality of all subtasks
qlast quality of most recently completed subtask

qsum all as with qsum but all subtasks must be completed
qseq min as with qmin but all subtasks must be completed in order
qseq max as with qmax but all subtasks must be completed in order

that G1 must be achieved before we can start to work on G22 if we want G22 to be
achieved with quality.

The tæms formal model calls for each leaf goal or task to be described by
three parameters: quality, cost, and duration. Figure 9.1 shows examples of these
parameter values for only two nodes (G1 and G31) due to space constraints. In
practice all leaf nodes should have similar values. These parameters represent the
quality we expect to get when the goal is achieved (that is, how well it will get
done), the cost the system will incur in achieving that goal, and the duration of
time required to achieve the goal (or perform the task). The values are probabilistic.
For example, G31 will with .1 probability be achieved with a quality of 0 (that is,
it will fail to get achieved) while with a probability of .9 it will be achieved with
quality of 5. G31 also has a fixed cost of 10 and it will take either 2 time units to
finish, with probability .4, or 5 units to finish, with probability .6.

Figure 9.1 shows two ways of aggregating the quality of children nodes: the and
and or functions. These are boolean functions and require us to establish a quality
threshold below which we say that a goal has not been achieve. tæms usually
assumes that a quality of 0 means that the task was not achieved and anything
higher means that the task was achieved. For example, G0 will only be achieved if
(because of the and) G1 is achieved, which only happens with probability .8 each
time an agent tries.

tæms allows us to use many different functions besides simply and and or .
Table 9.2 shows some of the quality accumulation functions (qafs) that are

quality accumulation
functions

defined in tæms. Of course, the more different qafs we use the harder it will be, in
general, to find a good schedule for the agents. Scheduling algorithms must always
limit themselves to a subset of qafs in order to achieve realistic running times.

9.2. GPGP 139

tæms Structure
and

Goal Criteria

Design-to-Criteria
Scheduler Execution

Task
Assessor

gpgp
Coordination

Non-Local
Commitment

Database

Schedule

Uses

U
se

s

Produces Uses

Action/Sense
Domain Info. Msgs.

Reschedule Requests State

Update
s

Updates

Reschedule Requests

Updates U
pd

at
es

Coordination Msgs
Figure 9.3: gpgp agent archi-
tecture. Components are in
squares and data structures
are in rounded squares.

9.2 GPGP

Generalized Partial Global Planning (gpgp) is the complete framework for mul-
tiagent coordination which includes, as one of its parts the tæms data structure.
Over the years there have been many gpgp agent implementations each one slightly
different from the others but all sharing some basic features. They have been ap-
plied to a wide variety of applications, from airplane repair scheduling, to supply
chain management, to distributed sensor networks. The tæms data structure and
the gpgp approach to coordination via hierarchical task decomposition are among
the most successful and influential ideas in multiagent systems.

9.2.1 Agent Architecture

Figure 9.3 shows a typical agent architecture using gpgp. The red squares are
software components. These typically operate in parallel within the agent. The
black rounded squares are some of the most important data structures used by a
gpgp agent.

The tæms data structure lies at the heart of a gpgp agent. This tæms struc-
ture is also annotated with the goal criteria. That is, it specifies which goals the
agent should try to achieve. Remember that the basic tæms structure only lists
all possible goals, it does not say which agent should try to achieve which goal.
The tæms structure used by an agent does contain information that tells the agent
who is trying to achieve which task. The agent gets this information from the gpgp
coordination module which we will explain later.

The design to criteria scheduler is a component (program) which takes as input
a tæms data structure, along with some commitments the agent has made, and
generates a schedule. We will discuss the commitments in more detail later but,
basically, the agent has the ability to make commitments to other agents that say
that it will achieve a certain goal by a certain time. Once an agent has made a
commitment the design to criteria scheduler does everything possible to ensure that
the schedule it produces satisfies that commitment. The schedules produced by the
scheduler are simply lists of tasks or goals the agent must execute and the times at
which the agent will execute them.

The execution module handles plan execution as well as monitoring. That is, it
uses the schedule generated by the scheduler and instructs the agent to perform the
next task according to the schedule. It then uses the agent’s sensors to make sure
that the task was accomplished. In the case of a failure, or if it notices that the next
task/goal is impossible to achieve in the current world state, it will ask the design
to criteria scheduler to generate a new schedule. The execution module also sends

140 Chapter 9. Coordination Using Goal and Plan Hierarchies

Figure 9.4: Example of how
gpgp forms coordination re-
lationships. Superscripts on
the goals indicate the num-

ber of the agents that can
achieve that goal. The origi-

nal tæms structure, on the top
left, is expanded, top right,

and two graphs generated from
it and given to agents 1 and
2, bottom. The coordination
relationships are then added.

G1
0

G1,2
1 G2

2

G1
0

G∗1

G1
3 G2

4

G2
2

max

G1
0

G1
1

G1
3

G1
0

G2
1

G2
4

G2
2

CR

CR CR

all the information it has about the world and the schedule’s execution state to the
task assessor module. The task assessor module has domain-specific knowledge and
can determine if there are changes that need to be made to the tæms structure. For
example, it might determine that one of the subgoals is no longer needed because
of some specific change in the world. The execution module can also, in a more
generalized manner, make changes to the tæms structure. These changes are all
incorporated into the current tæms structure.

9.2.2 Coordination

In parallel with all these modules, the gpgp coordination module is always in com-
munication with other agents and tries to keep the agent’s commitments and tæms
structure updated. The gpgp coordination module implements (mostly) domain
independent coordination techniques and is the module that tells the agent which
of the goals and tasks in its tæms structure it should achieve.

Figure 9.4 gives a pictorial view of the general steps the gpgp module follows in
order to achieve coordination among agents. The coordination module starts with
the tæms structure shown on the left. The structure is then modified so that every
goal that can be achieved by more than one agent is replaced by a new dummy
goal which has one child for every agent that could perform the goal. Each one of
the children is a new goal that can only be performed by one child. The children
are joined by a max qaf. In Figure 9.4 we see show G1,2

1 , which could be achieved
by either 1 or 2 (as denoted by the superscript) is replaced by a new G1 with two
children G1

3 and G2
4.

The resulting graph is then divided among the agents such that each agent has
the subgraph with all the goals that the agent can achieve plus all the ancestors
of these goals (all the way to the root). This division can be seen in the last two
graphs of Figure 9.4.

The gpgp coordination module identifies coordination relationships (CR).
coordination
relationships

These come from two different situations: when a non-local effect in the original
graph now starts in one graph and ends in another, or when a non-local effect

9.2. GPGP 141

or a subtask relationship has one end in one subgraph but the other end in both
subgraphs.

Notice that these CRs denote situations where one of the agents needs to either
wait for the other to finish or to determine whether the other one has failed. The
gpgp module uses some mechanism to remove the uncertainty that these CRs cause.
Specifically, it makes the agent commit to do those actions that are at the initiating
end of the CR to the other agent. For example, in Figure 9.4 the gpgp module would
make agent 1 send to agent 2 the messages: “Commit (Do(G1))” and “Commit
(Do(G3))”.

9.2.3 Design-to-Criteria Scheduler

The design-to-criteria scheduler is a complex piece of software which uses search
along with a bunch of heuristics to find a good schedule given the current tæms
structure and the set of commitments. The scheduler only tries to schedule the
first few tasks since it knows that it is likely that the problem will change and it
will need to re-schedule. The scheduler also sometimes needs to create temporary
commitments and generate schedules using those commitments for the gpgp coor-
dination module. That is, when the gpgp coordination module wants to know how
a certain commitment might affect the agent’s other commitments it will ask the
design-to-criteria scheduler to create a new schedule using those commitments.

The job of the scheduler is very complicated. It must decide how to satisfy goals
in the tæms() structure and which ones are likely to generate the maximum utility.
As such, the scheduler is a large piece of code which is generally considered a black
box by gpgp users. They just feed it the tæms structure and out comes a schedule.
The scheduler solves this problem by using a number of search heuristics and other
specialized techniques.

9.2.4 GPGP/tæms Summary

The gpgp/tæms framework utilizes some key concepts. It views the problem of
coordination as distributed optimization, in fact, it reduces complex problems to
something similar to the distributed constraint optimization problem of Chapter 2.
It provides a family of coordination mechanism for situation-specific control. It
uses tæms to provide proven domain-independent representation of agent tasks,
with support for multiple goals of varying worth and different deadline. It also uses
quantitative coordination relationships among tasks.

The general approach of gpgp has been widely successful and has proven itself
in many domains. The tæms structure has been adopted not just as a programming
tools but also as a design tool to be used to better understand the problem. However,
one problem with gpgp has been that it has required modifications for each one of
its applications. As such, gpgp is best thought of as a general approach to designing
multiagent systems rather than as a specific tool/architecture.

Chapter 10

Nature-Inspired Approaches

(Abelson et al., 2000), (Nagpal, 2002)

10.1 Ants and Termites

(Kube and Bonabeau, 2000), (Bonabeau et al., 1999), (Parunak et al., 2002), (Sauter
et al., 2002), (Parunak, 1997)

10.2 Immune System

(Kephart and White, 1991), (Kephart, 1994)

10.3 Physics

(Cheng et al., 2005)

143

Bibliography

Abelson, H., Allen, D., Coore, D., Hanson, C., Homsy, G., Knight, T. F., Nagpal,
R., Rauch, E., Sussman, G. J., and Weiss, R. (2000). Amorphous computing.
Communications of the ACM, 43(5):74–82.

Aknine, S., Pinson, S., and Shakun, M. F. (2004). An extended multi-agent ne-
gotiation protocol. Autonomous Agents and Multi-Agent Systems, 8(1):5–45.
doi:10.1023/B:AGNT.0000009409.19387.f8.

Andersson, M. R. and Sandholm, T. (1998). Contract types for satisficing task
allocation: Ii experimental results. In AAAI Spring Symposium: Satisficing
Models.

Arrow, K. J. (1951). Social choice and individual values. Yale University Press.

Axelrod, R. M. (1984). The Evolution of Cooperation. Basic Books.

Bessière, C., Maestre, A., Brito, I., and Meseguer, P. (2005). Asynchronous back-
tracking without adding links: a new member in the ABT family. Artificial
Intelligence, 161:7–24. doi:10.1016/j.artint.2004.10.002.

Binmore, K. and Vulkan, N. (1999). Applying game theory to automated negotia-
tion. Netnomics, 1(1):1–9. doi:10.1023/A:1011489402739.

Bomze, I. M. (1986). Noncooperative two-person games in biology: A classifi-
cation. International Journal of Game Theory, 15(1):31–57. doi:10.1007/
BF01769275.

Bonabeau, E., Dorigo, M., and Theraulaz, G. (1999). Swarm Intelligence: From
Natural to Artificial Systems. Oxford.

Brooks, C. H. and Durfee, E. H. (2003). Congregation formation in multiagent
systems. Journal of Autonomous Agents and Multi-agent Systems, 7(1–2):145–
170.

Camerer, C. F., Lowenstein, G., and Rabin, M., editors (2003). Advances in Be-
havioral Economics. Princeton.

Cheng, J., Cheng, W., and Nagpal, R. (2005). Robust and self-repairing forma-
tion control for swarms of mobile agents. In Proceedings of the Twentieth
National Conference on Artificial Intelligence, pages 59–64, Menlo Park, Cali-
fornia. AAAI Press.

Clarke, E. H. (1971). Multipart pricing of public goods. Public Choice, 11(1).
doi:10.1007/BF01726210.

Conen, W. and Sandholm, T. (2001a). Minimal preference elicitation in combinato-
rial auctions. In Proceedings of the International Joint Conference of Artificial
Intelligence Workshop on Economic Agents, Models, and Mechanisms.

Conen, W. and Sandholm, T. (2001b). Preference elicitation in combinatorial auc-
tions. In Proceedings of the Third ACM conference on Electronic Commerce,
pages 256–259, New York, NY, USA. ACM Press. doi:10.1145/501158.
501191.

145

http://jmvidal.cse.sc.edu/lib/abelson00a.html
http://jmvidal.cse.sc.edu/lib/aknine04a.html
http://jmvidal.cse.sc.edu/lib/aknine04a.html
doi:10.1023/B:AGNT.0000009409.19387.f8
http://jmvidal.cse.sc.edu/lib/andersson98a.html
http://jmvidal.cse.sc.edu/lib/andersson98a.html
http://jmvidal.cse.sc.edu/lib/arrow51a.html
http://jmvidal.cse.sc.edu/lib/axelrod:84.html
http://jmvidal.cse.sc.edu/lib/bessiere05a.html
http://jmvidal.cse.sc.edu/lib/bessiere05a.html
doi:10.1016/j.artint.2004.10.002
http://jmvidal.cse.sc.edu/lib/binmore99a.html
http://jmvidal.cse.sc.edu/lib/binmore99a.html
doi:10.1023/A:1011489402739
http://jmvidal.cse.sc.edu/lib/bomze86a.html
http://jmvidal.cse.sc.edu/lib/bomze86a.html
doi:10.1007/BF01769275
doi:10.1007/BF01769275
http://jmvidal.cse.sc.edu/lib/bonabeau99a.html
http://jmvidal.cse.sc.edu/lib/bonabeau99a.html
http://jmvidal.cse.sc.edu/lib/brooks02a.html
http://jmvidal.cse.sc.edu/lib/brooks02a.html
http://jmvidal.cse.sc.edu/lib/camerer03a.html
http://jmvidal.cse.sc.edu/lib/camerer03a.html
http://jmvidal.cse.sc.edu/lib/cheng05a.html
http://jmvidal.cse.sc.edu/lib/cheng05a.html
http://jmvidal.cse.sc.edu/lib/clarke71a.html
doi:10.1007/BF01726210
http://jmvidal.cse.sc.edu/lib/conen01b.html
http://jmvidal.cse.sc.edu/lib/conen01b.html
http://jmvidal.cse.sc.edu/lib/conen01a.html
http://jmvidal.cse.sc.edu/lib/conen01a.html
doi:10.1145/501158.501191
doi:10.1145/501158.501191

146 Bibliography

Conen, W. and Sandholm, T. (2002). Partial-revelation VCG mechanism for com-
binatorial auctions. In Proceedings of the National Conference on Artificial
Intelligence, pages 367–372.

Conitzer, V. and Sandholm, T. (2003). AWESOME: A general multiagent learning
algorithm that converges in self-play and learns a best response against sta-
tionary opponents. In Proceedings of the Twentieth International Conference
on Machine Learning.

Conitzer, V. and Sandholm, T. (2006). AWESOME: A general multiagent learn-
ing algorithm that converges in self-play and learns a best response against
stationary opponents. Machine Learning. doi:10.1007/s10994-006-0143-1.

Cramton, P., Shoham, Y., and Steinberg, R., editors (2006). Combinatorial Auc-
tions. MIT Press.

Dang, V. D. and Jennings, N. (2004). Generating coalition structures with finite
bound from the optimal guarantees. In Proceedings of the Third International
Joint Conference on Autonomous Agents and MultiAgent Systems, pages 564–
571. ACM.

Dash, R., Ramchurn, S., and Jennings, N. (2004). Trust-based mechanism design.
In Proceedings of the Third International Joint Conference on Autonomous
Agents and MultiAgent Systems, pages 748–755. ACM.

Dash, R. K., Jennings, N. R., and Parkes, D. C. (2003). Computational mechanism
design: A call to arms. IEEE Intelligent Systems, 18(6):40–47. doi:10.1041/
X6040s-2003.

Davin, J. and Modi, P. J. (2005). Impact of problem centralization in distributed
constraint optimization algorithms. In (Dignum et al., 2005), pages 1057–1066.

Davis, R. and Smith, R. G. (1983). Negotiation as a metaphor for distributed
problem solving. Artificial Intelligence, 20:63–109.

Delgado, J. (2002). Emergence of social conventions in complex networks. Artificial
Intelligence, 141:171–185. doi:10.1016/S0004-3702(02)00262-X.

Dignum, F., Dignum, V., Koenig, S., Kraus, S., Pechoucek, M., Singh, M., Steiner,
D., Thompson, S., and Wooldridge, M., editors (2005). Proceedings of the
Fourth International Joint Conference on Autonoumous Agents and Multi
Agent Systems, New York, NY. ACM Press.

Dijkstra, E. W. (1959). A note on two problems in connexion with graphs. Nu-
merische Mathematik, 1:269–271.

Durfee, E. H. (1999). Practically coordinating. AI Magazine, 20(1):99–116.

Durfee, E. H. and Yokoo, M., editors (2007). Proceedings of the Sixth International
Joint Conference on Autonomous Agents and Multiagent Systems.

Endriss, U., Maudet, N., Sadri, F., and Toni, F. (2006). Negotiating socially optimal
allocations of resources. Journal of Artificial Intelligence Research, 25:315–348.

Fagin, R., Halpern, J. Y., Moses, Y., and Vardi, M. Y. (1995). Reasoning About
Knowledge. The MIT Press, Cambridge, MA.

Faratin, P., Sierra, C., and Jennings, N. R. (1998). Negotiation decision functions
for autonomous agents. Robotics and Autonomous Systems, 24(3–4):159–182.
doi:10.1016/S0921-8890(98)00029-3.

http://jmvidal.cse.sc.edu/lib/conen02a.html
http://jmvidal.cse.sc.edu/lib/conen02a.html
http://jmvidal.cse.sc.edu/lib/conitzer03a.html
http://jmvidal.cse.sc.edu/lib/conitzer03a.html
http://jmvidal.cse.sc.edu/lib/conitzer03a.html
http://jmvidal.cse.sc.edu/lib/conitzer06a.html
http://jmvidal.cse.sc.edu/lib/conitzer06a.html
http://jmvidal.cse.sc.edu/lib/conitzer06a.html
doi:10.1007/s10994-006-0143-1
http://jmvidal.cse.sc.edu/lib/cramton06a.html
http://jmvidal.cse.sc.edu/lib/cramton06a.html
http://jmvidal.cse.sc.edu/lib/dang04a.html
http://jmvidal.cse.sc.edu/lib/dang04a.html
http://jmvidal.cse.sc.edu/lib/dash04a.html
http://jmvidal.cse.sc.edu/lib/dash03a.html
http://jmvidal.cse.sc.edu/lib/dash03a.html
doi:10.1041/X6040s-2003
doi:10.1041/X6040s-2003
http://jmvidal.cse.sc.edu/lib/davin05a.html
http://jmvidal.cse.sc.edu/lib/davin05a.html
http://jmvidal.cse.sc.edu/lib/davis83a.html
http://jmvidal.cse.sc.edu/lib/davis83a.html
http://jmvidal.cse.sc.edu/lib/delgado02a.html
doi:10.1016/S0004-3702(02)00262-X
http://jmvidal.cse.sc.edu/lib/aamas05.html
http://jmvidal.cse.sc.edu/lib/aamas05.html
http://jmvidal.cse.sc.edu/lib/aamas05.html
http://jmvidal.cse.sc.edu/lib/dijkstra59a.html
http://jmvidal.cse.sc.edu/lib/durfee99b.html
http://jmvidal.cse.sc.edu/lib/aamas07.html
http://jmvidal.cse.sc.edu/lib/aamas07.html
http://jmvidal.cse.sc.edu/lib/endriss06b.html
http://jmvidal.cse.sc.edu/lib/endriss06b.html
http://jmvidal.cse.sc.edu/lib/reasoning:about:knowledge.html
http://jmvidal.cse.sc.edu/lib/reasoning:about:knowledge.html
http://jmvidal.cse.sc.edu/lib/faratin98a.html
http://jmvidal.cse.sc.edu/lib/faratin98a.html
doi:10.1016/S0921-8890(98)00029-3

Bibliography 147

Fatima, S. S., Wooldridge, M., and Jennings, N. (2004). Optimal negotiation of
multiple issues in incomplete information settings. In Proceedings of the Third
International Joint Conference on Autonomous Agents and MultiAgent Sys-
tems, pages 1080–1089. ACM.

Feigenbaum, J., Papadimitriou, C., Sami, R., and Shenker, S. (2005). A BGP-
based mechanism for lowest-cost routing. Distributed Computing. doi:10.
1007/s00446-005-0122-y.

Feigenbaum, J., Papadimitriou, C. H., and Shenker, S. (2001). Sharing the cost of
multicast transmissions. Journal of Computer and System Sciences, 63(1):21–
41. doi:10.1006/jcss.2001.1754.

Fudenberg, D. and Kreps, D. (1990). Lectures on learning and equilibrium in
strategic-form games. Technical report, CORE Lecture Series.

Fudenberg, D. and Levine, D. K. (1998). The Theory of Learning in Games. MIT
Press.

Fujishima, Y., Leyton-Brown, K., and Shoham, Y. (1999). Taming the compu-
tational complexity of combinatorial auctions: Optimal and approximate ap-
proaches. In Proceedings of the Sixteenth International Joint Conference on
Artificial Intelligence, pages 548–553. Morgan Kaufmann Publishers Inc.

Gmytrasiewicz, P. J. and Durfee, E. H. (1995). A rigorous, operational formalization
of recursive modeling. In Proceedings of the First International Conference on
Multi-Agent Systems, pages 125–132. AAAI/MIT press.

Gmytrasiewicz, P. J. and Durfee, E. H. (2001). Rational communication in
multi-agent systems. Autonomous Agents and Multi-Agent Systems Journal,
4(3):233–272.

Goradia, H. J. and Vidal, J. M. (2007). An equal excess negotiation algorithm for
coalition formation. In Proceedings of the Autonomous Agents and Multi-Agent
Systems Conference.

Groves, T. (1973). Incentives in teams. Econometrica, 41(4):617–631.

Harford, T. (2005). The Undercover Economist: Exposing Why the Rich Are Rich,
the Poor Are Poor–and Why You Can Never Buy a Decent Used Car! Oxford
University Press.

Harsanyi, J. C. (1965). Approaches to the bargaining problem before and after the
theory of games: A critical discussion of zeuthen’s, hicks’, and nash’s theories.
Econometrica, 24(2):144–157.

Hirayama, K. and Yokoo, M. (2005). The distributed breakout algorithms. Artificial
Intelligence, 161(1–2):89–115. doi:10.1016/j.artint.2004.08.004.

Hu, J. and Wellman, M. P. (2003). Nash q-learning for general-sum stochastic
games. Journal of Machine Learning Research, 4:1039–1069.

Hudson, B. and Sandholm, T. (2004). Effectiveness of query types and policies for
preference elicitation in combinatorial auctions. In (Jennings et al., 2004).

Jennings, N. R., Faratin, P., Lomuscio, A. R., Parsons, S., Wooldridge, M., and
Sierra, C. (2001). Automated negotiation: Prospects methods and challenges.
Group Decision and Negotiation, 10(2):199–215.

Jennings, N. R., Sierra, C., Sonenberg, L., and Tambe, M., editors (2004). Proceed-
ings of the Third International Joint Conference on Autonoumous Agents and
Multi Agent Systems, New York, NY. ACM Press.

http://jmvidal.cse.sc.edu/lib/fatima04b.html
http://jmvidal.cse.sc.edu/lib/fatima04b.html
http://jmvidal.cse.sc.edu/lib/feigenbaum05a.html
http://jmvidal.cse.sc.edu/lib/feigenbaum05a.html
doi:10.1007/s00446-005-0122-y
doi:10.1007/s00446-005-0122-y
http://jmvidal.cse.sc.edu/lib/feigenbaum01a.html
http://jmvidal.cse.sc.edu/lib/feigenbaum01a.html
doi:10.1006/jcss.2001.1754
http://jmvidal.cse.sc.edu/lib/fudenberg90a.html
http://jmvidal.cse.sc.edu/lib/fudenberg90a.html
http://jmvidal.cse.sc.edu/lib/fudenberg98a.html
http://jmvidal.cse.sc.edu/lib/fujishima99a.html
http://jmvidal.cse.sc.edu/lib/fujishima99a.html
http://jmvidal.cse.sc.edu/lib/fujishima99a.html
http://jmvidal.cse.sc.edu/lib/gmytrasiewicz95a.html
http://jmvidal.cse.sc.edu/lib/gmytrasiewicz95a.html
http://jmvidal.cse.sc.edu/lib/gmytrasiewicz01a.html
http://jmvidal.cse.sc.edu/lib/gmytrasiewicz01a.html
http://jmvidal.cse.sc.edu/lib/goradia07b.html
http://jmvidal.cse.sc.edu/lib/goradia07b.html
http://jmvidal.cse.sc.edu/lib/groves73a.html
http://jmvidal.cse.sc.edu/lib/harford05a.html
http://jmvidal.cse.sc.edu/lib/harford05a.html
http://jmvidal.cse.sc.edu/lib/harsanyi65a.html
http://jmvidal.cse.sc.edu/lib/harsanyi65a.html
http://jmvidal.cse.sc.edu/lib/hirayama05a.html
doi:10.1016/j.artint.2004.08.004
http://jmvidal.cse.sc.edu/lib/hu03a.html
http://jmvidal.cse.sc.edu/lib/hu03a.html
http://jmvidal.cse.sc.edu/lib/hudson04a.html
http://jmvidal.cse.sc.edu/lib/hudson04a.html
http://jmvidal.cse.sc.edu/lib/jennings01a.html
http://jmvidal.cse.sc.edu/lib/aamas04.html
http://jmvidal.cse.sc.edu/lib/aamas04.html
http://jmvidal.cse.sc.edu/lib/aamas04.html

148 Bibliography

Jiang, H. and Vidal, J. M. (2005). Reducing redundant messages in the asyn-
chronous backtracking algorithm. In Proceedings of the Sixth International
Workshop on Distributed Constraint Reasoning.

Jiang, H. and Vidal, J. M. (2006). The message management asynchronous back-
tracking algorithm. Journal of Experimental and Theoretical Artificial Intelli-
gence. To appear.

Kalai, E. and Smorodinsky, M. (1975). Other solutions to nash’s bargaining prob-
lem. Econometrica, 43:513–518.

Kelly, F. and Stenberg, R. (2000). A combinatorial auction with multiple winners
for universal service. Management Science, 46(4):586–596.

Kephart, J. O. (1994). A biologically inspired immune system for computers. In
Brooks, R. A. and Maes, P., editors, Proceedings of the Fourth International
Workshop on Synthesis and Simulatoin of Living Systems, pages 130–139. MIT
Press, Cambridge, MA.

Kephart, J. O. and White, S. R. (1991). Directed-graph epidemiological models of
computer viruses. In Proceedings of the IEEE Computer Society Symposium on
Research in Security and Privacy, pages 343–359. doi:10.1109/RISP.1991.
130801.

Klein, M., Faratin, P., Sayama, H., and Bar-Yam, Y. (2003). Negotiating com-
plex contracts. Group Decision and Negotiation, 12:111–125. doi:10.1023/A:
1023068821218.

Kraus, S. (2001). Strategic Negotiation in Multiagent Environments. MIT Press.

Kube, C. R. and Bonabeau, E. (2000). Cooperative transport by ants and robots.
Robotics and Autonomous Systems, pages 85–101.

Lesser, V., Decker, K., Wagner, T., Carver, N., Garvey, A., Horling, B., Neiman, D.,
Podorozhny, R., Prasad, M. N., Raja, A., Vincent, R., Xuan, P., and Zhang,
X. Q. (2004). Evolution of the GPGP/TAEMS domain-independent coordi-
nation framework. Autonomous Agents and Multi-Agent Sytems,, 9:87–143.
doi:10.1023/B:AGNT.0000019690.28073.04.

Leyton-Brown, K., Pearson, M., and Shoham, Y. (2000). Towards a universal test
suite for combinatorial auction algorithms. In Proceedings of the 2nd ACM
conference on Electronic commerce, pages 66–76. ACM Press. http://cats.
stanford.edu, doi:10.1145/352871.352879.

Littman, M. L. (2001). Friend-or-foe q-learning in general-sum games. In Proceed-
ings of the Eighteenth International Conference on Machine Learning, pages
322–328. Morgan Kaufmann.

MacKie-Mason, J. K. and Varian, H. R. (1994). Generalized vickrey auctions.
Technical report, University of Michigan.

Mailler, R. T. and Lesser, V. (2004a). Solving distributed constraint optimization
problems using cooperative mediation. In (Jennings et al., 2004), pages 438–
445.

Mailler, R. T. and Lesser, V. (2004b). Using cooperative mediation to solve dis-
tributed constraint satisfaction problems. In (Jennings et al., 2004), pages
446–453.

Mas-Colell, A., Whinston, M. D., and Green, J. R. (1995). Microeconomic Theory.
Oxford.

http://jmvidal.cse.sc.edu/lib/jiang05a.html
http://jmvidal.cse.sc.edu/lib/jiang05a.html
http://jmvidal.cse.sc.edu/lib/jiang06c.html
http://jmvidal.cse.sc.edu/lib/jiang06c.html
http://jmvidal.cse.sc.edu/lib/kalai75a.html
http://jmvidal.cse.sc.edu/lib/kalai75a.html
http://jmvidal.cse.sc.edu/lib/kelly00a.html
http://jmvidal.cse.sc.edu/lib/kelly00a.html
http://jmvidal.cse.sc.edu/lib/kephart94a.html
http://jmvidal.cse.sc.edu/lib/kephart91a.html
http://jmvidal.cse.sc.edu/lib/kephart91a.html
doi:10.1109/RISP.1991.130801
doi:10.1109/RISP.1991.130801
http://jmvidal.cse.sc.edu/lib/klein03a.html
http://jmvidal.cse.sc.edu/lib/klein03a.html
doi:10.1023/A:1023068821218
doi:10.1023/A:1023068821218
http://jmvidal.cse.sc.edu/lib/kraus01a.html
http://jmvidal.cse.sc.edu/lib/kube00a.html
http://jmvidal.cse.sc.edu/lib/lesser04a.html
http://jmvidal.cse.sc.edu/lib/lesser04a.html
doi:10.1023/B:AGNT.0000019690.28073.04
http://jmvidal.cse.sc.edu/lib/leyton-brown00a.html
http://jmvidal.cse.sc.edu/lib/leyton-brown00a.html
http://cats.stanford.edu
http://cats.stanford.edu
doi:10.1145/352871.352879
http://jmvidal.cse.sc.edu/lib/littman01a.html
http://jmvidal.cse.sc.edu/lib/mackie-mason94a.html
http://jmvidal.cse.sc.edu/lib/mailler04b.html
http://jmvidal.cse.sc.edu/lib/mailler04b.html
http://jmvidal.cse.sc.edu/lib/mailler04a.html
http://jmvidal.cse.sc.edu/lib/mailler04a.html
http://jmvidal.cse.sc.edu/lib/mas-colell95a.html

Bibliography 149

McKelvey, R. D., McLennan, A. M., and Turocy, T. L. (2006). Gambit: Software
tools for game theory. Technical report, Version 0.2006.01.20.

Mendoza, B. and Vidal, J. M. (2007). Bidding algorithms for a distributed com-
binatorial auction. In Proceedings of the Autonomous Agents and Multi-Agent
Systems Conference.

Minton, S., Johnston, M. D., Philips, A. B., and Laird, P. (1992). Minimizing
conflicts: a heuristic repair method for constraint satisfaction and scheduling
problems. Artificial Intelligence, 58:161–205. doi:10.1016/0004-3702(92)
90007-K.

Mitchell, T. M. (1997). Machine Learning. McGraw Hill.

Modi, P. J., Shen, W.-M., Tambe, M., and Yokoo, M. (2005). Adopt: Asynchro-
nous distributed constraint optimization with quality guarantees. Artificial
Intelligence, 16(1–2):149–180. doi:10.1016/j.artint.2004.09.003.

Monderer, D. and Tennenholtz, M. (1999). Distributed games: From mechanisms
to protocols. In Proceedings of the Sixteenth National Conference on Artificial
Intelligence, pages 32–37. AAAI Press. Menlo Park, Calif.

Muthoo, A. (1999). Bargaining Theory with Applications. Cambridge University
Press.

Nagpal, R. (2002). Programmable self-assembly using biologically-inspired mul-
tiagent control. In Proceedings of the 1st International Joint Conference on
Autonomous Agents and Multi-Agent Systems.

Nash, J. F. (1950). The bargaining problem. Econometrica, 18:155–162.

Neumann, J. V. (1928). Zur theorie der gesellschaftsspiele. Mathematische Annalen,
100(1):295–320. doi:10.1007/BF01448847.

Neumann, J. V. and Morgenstern, O. (1944). Theory of Games and Economic
Behavior. Princeton University Press.

nevar, C. C., McGinnis, J., Modgil, S., Rahwan, I., Reed, C., Simari, G., South, M.,
Vreeswijk, G., and Willmott, S. (2006). Towards and argument interchange
format. The Knowledge Engineering Review, 21(4):293–316. doi:10.1017/
S0269888906001044.

Nguyen, T. D. and Jennings, N. (2004). Coordinating multiple concurrent nego-
tiations. In Proceedings of the Third International Joint Conference on Au-
tonomous Agents and MultiAgent Systems, pages 1064–1071. ACM.

Nisan, N. (2000). Bidding and allocation in combinatorial auctions. In Proceedings
of the ACM Conference on Electronic Commerce, pages 1–12.

Nisan, N. and Ronen, A. (2001). Algorithmic mechanism design. Games and Eco-
nomic Behavior, 35:166–196. doi:10.1006/game.1999.0790.

Nudelman, E., Wortman, J., Leyton-Brown, K., and Shoham, Y. (2004). Run the
GAMUT: A comprehensive approach to evaluating game-theoretic algorithms.
In (Jennings et al., 2004).

Osborne, M. J. and Rubinstein, A. (1990). Bargaining and Markets. Academic
Press.

Osborne, M. J. and Rubinstein, A. (1999). A Course in Game Theory. MIT Press.

Parkes, D. C. and Shneidman, J. (2004). Distributed implementations of vickrey-
clarke-groves auctions. In Proceedings of the Third International Joint Confer-
ence on Autonomous Agents and MultiAgent Systems, pages 261–268. ACM.

http://jmvidal.cse.sc.edu/lib/mckelvey06a.html
http://jmvidal.cse.sc.edu/lib/mckelvey06a.html
http://jmvidal.cse.sc.edu/lib/mendoza07a.html
http://jmvidal.cse.sc.edu/lib/mendoza07a.html
http://jmvidal.cse.sc.edu/lib/minton92a.html
http://jmvidal.cse.sc.edu/lib/minton92a.html
http://jmvidal.cse.sc.edu/lib/minton92a.html
doi:10.1016/0004-3702(92)90007-K
doi:10.1016/0004-3702(92)90007-K
http://jmvidal.cse.sc.edu/lib/mitchell97a.html
http://jmvidal.cse.sc.edu/lib/modi04a.html
http://jmvidal.cse.sc.edu/lib/modi04a.html
doi:10.1016/j.artint.2004.09.003
http://jmvidal.cse.sc.edu/lib/monderer99a.html
http://jmvidal.cse.sc.edu/lib/monderer99a.html
http://jmvidal.cse.sc.edu/lib/muthoo99a.html
http://jmvidal.cse.sc.edu/lib/nagpal02a.html
http://jmvidal.cse.sc.edu/lib/nagpal02a.html
http://jmvidal.cse.sc.edu/lib/nash50a.html
http://jmvidal.cse.sc.edu/lib/neumann28a.html
doi:10.1007/BF01448847
http://jmvidal.cse.sc.edu/lib/neumann44a.html
http://jmvidal.cse.sc.edu/lib/neumann44a.html
http://jmvidal.cse.sc.edu/lib/chesnevar06a.html
http://jmvidal.cse.sc.edu/lib/chesnevar06a.html
doi:10.1017/S0269888906001044
doi:10.1017/S0269888906001044
http://jmvidal.cse.sc.edu/lib/nguyen04a.html
http://jmvidal.cse.sc.edu/lib/nguyen04a.html
http://jmvidal.cse.sc.edu/lib/nisan00a.html
http://jmvidal.cse.sc.edu/lib/nisan01a.html
doi:10.1006/game.1999.0790
http://jmvidal.cse.sc.edu/lib/nudelman04a.html
http://jmvidal.cse.sc.edu/lib/nudelman04a.html
http://jmvidal.cse.sc.edu/lib/osborne90a.html
http://jmvidal.cse.sc.edu/lib/osborne99a.html
http://jmvidal.cse.sc.edu/lib/parkes04a.html
http://jmvidal.cse.sc.edu/lib/parkes04a.html

150 Bibliography

Parunak, H. V. D. (1997). “go to the ant”: Engineering principles from natural
agent systems. Annals of Operation Research, 75:69–101.

Parunak, H. V. D., Brueckner, S., and Sauter, J. (2002). Synthetic pheromone
mechanisms for coordination of unmanned vehicles. In Proceedings of the First
Intenational Joint Conference on Autonomous Agents and Multiagent Systems,
pages 448–450, Bologna, Italy. ACM Press, New York, NY.

Rahwan, I., Ramchurn, S. D., Jennings, N. R., McBurney, P., Parsons, S., and
Sonenberg, L. (2004). Argumentation-based negotiation. The Knowledge En-
gineering Review, 18(4):343–375. doi:10.1017/S0269888904000098.

Resnick, M. (1994). Turtles, Termites, and Traffic Jams: Explorations in Massively
Parallel Microworlds. MIT Press.

Rosenschein, J. S. and Zlotkin, G. (1994). Rules of Encounter. The MIT Press,
Cambridge, MA.

Rothkopf, M. H., Pekec, A., and Harstad, R. M. (1998). Computationally manage-
able combinational auctions. Management Science, 44(8):1131–1147.

Rubinstein, A. (1982). Perfect equilibrium in a bargaining model. Econometrica,
50(1):97–110.

Russell, S. and Norvig, P. (2003). Artificial Intelligence: A Modern Approach. Pren-
tice Hall, second edition.

Sandholm, T. (1997). Necessary and sufficient contract types for optimal task al-
location. In Proceedings of the Fourteenth International Joint Conference on
Artificial Intelligence.

Sandholm, T. (1998). Contract types for satisficing task allocation: I theoretical
results. In AAAI Spring Symposium: Satisficing Models.

Sandholm, T. (1999). An algorithm for winner determination in combinatorial
auctions. In Proceedings of the Sixteenth International Joint Conference on
Artificial Intelligence, pages 542–547.

Sandholm, T. (2002). An algorithm for winner determination in combinatorial
auctions. Artificial Intelligence, 135(1-2):1–54. doi:10.1016/S0004-3702(01)
00159-X.

Sandholm, T., Larson, K., Anderson, M., Shehory, O., and Tohmé, F. (1999). Coali-
tion structure generation with worst case guarantees. Artificial Intelligence,
111(1-2):209–238. doi:10.1016/S0004-3702(99)00036-3.

Sandholm, T. and Lesser, V. (2002). Leveled-commitment contracting: A back-
tracking instrument for multiagent systems. AI Magazine, 23(3):89–100.

Sandholm, T., Suri, S., Gilpin, A., and Levine, D. (2005). CABOB: a fast optimal
algorithm for winner determination in combinatorial auctions. Management
Science, 51(3):374–391.

Sandholm, T. and Zhou, Y. (2002). Surplus equivalence of leveled commitment con-
tracts. Artificial Intelligence, 142(2):239–264. doi:10.1016/S0004-3702(02)
00275-8.

Sarne, D. and Arponen, T. (2007). Sequential decision making in parallel two-sided
economic search. In (Durfee and Yokoo, 2007).

Sauter, J. A., Matthews, R., Parunak, H. V. D., and Brueckner, S. (2002). Evolving
adaptive pheromone path planning mechanisms. In Proceedings of the First
Intenational Joint Conference on Autonomous Agents and Multiagent Systems,
pages 434–440, Bologna, Italy. ACM Press, New York, NY.

http://jmvidal.cse.sc.edu/lib/parunak97b.html
http://jmvidal.cse.sc.edu/lib/parunak97b.html
http://jmvidal.cse.sc.edu/lib/parunak02a.html
http://jmvidal.cse.sc.edu/lib/parunak02a.html
http://jmvidal.cse.sc.edu/lib/rahwan04a.html
doi:10.1017/S0269888904000098
http://jmvidal.cse.sc.edu/lib/resnick94a.html
http://jmvidal.cse.sc.edu/lib/resnick94a.html
http://jmvidal.cse.sc.edu/lib/rosenschein94a.html
http://jmvidal.cse.sc.edu/lib/rothkopf98a.html
http://jmvidal.cse.sc.edu/lib/rothkopf98a.html
http://jmvidal.cse.sc.edu/lib/rubinstein82a.html
http://jmvidal.cse.sc.edu/lib/russell03a.html
http://jmvidal.cse.sc.edu/lib/sandholm97a.html
http://jmvidal.cse.sc.edu/lib/sandholm97a.html
http://jmvidal.cse.sc.edu/lib/sandholm98b.html
http://jmvidal.cse.sc.edu/lib/sandholm98b.html
http://jmvidal.cse.sc.edu/lib/sandholm99a.html
http://jmvidal.cse.sc.edu/lib/sandholm99a.html
http://jmvidal.cse.sc.edu/lib/sandholm02b.html
http://jmvidal.cse.sc.edu/lib/sandholm02b.html
doi:10.1016/S0004-3702(01)00159-X
doi:10.1016/S0004-3702(01)00159-X
http://jmvidal.cse.sc.edu/lib/sandholm99b.html
http://jmvidal.cse.sc.edu/lib/sandholm99b.html
doi:10.1016/S0004-3702(99)00036-3
http://jmvidal.cse.sc.edu/lib/sandholm02a.html
http://jmvidal.cse.sc.edu/lib/sandholm02a.html
http://jmvidal.cse.sc.edu/lib/sandholm05a.html
http://jmvidal.cse.sc.edu/lib/sandholm05a.html
http://jmvidal.cse.sc.edu/lib/sandholm02c.html
http://jmvidal.cse.sc.edu/lib/sandholm02c.html
doi:10.1016/S0004-3702(02)00275-8
doi:10.1016/S0004-3702(02)00275-8
http://jmvidal.cse.sc.edu/lib/sarne07a.html
http://jmvidal.cse.sc.edu/lib/sarne07a.html
http://jmvidal.cse.sc.edu/lib/sauter02a.html
http://jmvidal.cse.sc.edu/lib/sauter02a.html

Bibliography 151

Sen, S. (2002). Believing others: Pros and cons. Artificial Intelligence, 142(2):179–
203. doi:10.1016/S0004-3702(02)00289-8.

Shehory, O. and Kraus, S. (1998). Methods for task allocation via agent coalition
formation. Artificial Intelligence, 101(1-2):165–200.

Shoham, Y. and Tennenholtz, M. (1997). On the emergence of social conventions:
modeling, analysis, and simulations. Artificial Intelligence, 94:139–166.

Smith, R. G. (1981). The contract net protocol: High-level communication and
control in a distributed problem solver. IEEE Transactions on Computers,
C-29(12):1104–1113.

Squyres, S. (2005). Roving Mars: Spirit, Opportunity, and the Exploration of the
Red Planet. Hyperion.

Stone, P. (2000). Layered Learning in Multiagent Systems. MIT Press.

Stone, P. and Weiss, G., editors (2006). Proceedings of the Fifth International Joint
Conference on Autonoumous Agents and Multi Agent Systems, New York, NY.
ACM Press.

Surowiecki, J. (2005). The Wisdom of Crowds. Anchor.

Sutton, R. S. and Barto, A. G. (1998). Reinforcement Learning: An Introduction.
MIT Press.

Taylor, P. and Jonker, L. (1978). Evolutionary stable strategies and game dynamics.
Mathematical Biosciences, 16:76–83.

Tumer, K. and Wolpert, D., editors (2004). Collectives and the Design of Complex
Systems. SPringer.

Vidal, J. M. and Durfee, E. H. (1998a). Learning nested models in an informa-
tion economy. Journal of Experimental and Theoretical Artificial Intelligence,
10(3):291–308.

Vidal, J. M. and Durfee, E. H. (1998b). The moving target function problem in
multi-agent learning. In Proceedings of the Third International Conference on
Multi-Agent Systems, pages 317–324. AAAI/MIT press.

Vidal, J. M. and Durfee, E. H. (2003). Predicting the expected behavior of agents
that learn about agents: the CLRI framework. Autonomous Agents and Multi-
Agent Systems, 6(1):77–107. doi:10.1023/A:1021765422660.

Waltz, D. (1975). Understanding line drawings of scenes with shadows. In Winston,
P., editor, The Psychology of Computer Vision, pages 19–91. McGraw-Hill.

Watkins, C. J. C. H. and Dayan, P. (1992). Q-learning. Machine Learning, 8(3-
4):279–292. doi:10.1023/A:1022676722315.

Weibull, J. W. (1997). Evolutionary Game Theory. The MIT Press.

Wellman, M. P. (1996). Market-oriented programming: Some early lessons. In Clear-
water, S., editor, Market-Based Control: A Paradigm for Distributed Resource
Allocation. World Scientific.

Wilensky, U. (1999). NetLogo: Center for connected learning and computer-
based modeling, Northwestern University. Evanston, IL. http://ccl.
northwestern.edu/netlogo/.

Willer, D., editor (1999). Network Exchange Theory. Praeger Publishers, Westport
CT.

http://jmvidal.cse.sc.edu/lib/sen02b.html
doi:10.1016/S0004-3702(02)00289-8
http://jmvidal.cse.sc.edu/lib/shehory98a.html
http://jmvidal.cse.sc.edu/lib/shehory98a.html
http://jmvidal.cse.sc.edu/lib/shoham97a.html
http://jmvidal.cse.sc.edu/lib/shoham97a.html
http://jmvidal.cse.sc.edu/lib/smith81.html
http://jmvidal.cse.sc.edu/lib/smith81.html
http://jmvidal.cse.sc.edu/lib/squyres05a.html
http://jmvidal.cse.sc.edu/lib/squyres05a.html
http://jmvidal.cse.sc.edu/lib/stone00a.html
http://jmvidal.cse.sc.edu/lib/aamas06.html
http://jmvidal.cse.sc.edu/lib/aamas06.html
http://jmvidal.cse.sc.edu/lib/surowiecki05a.html
http://jmvidal.cse.sc.edu/lib/sutton98a.html
http://jmvidal.cse.sc.edu/lib/taylor78a.html
http://jmvidal.cse.sc.edu/lib/tumer04a.html
http://jmvidal.cse.sc.edu/lib/tumer04a.html
http://jmvidal.cse.sc.edu/lib/vidal:98b.html
http://jmvidal.cse.sc.edu/lib/vidal:98b.html
http://jmvidal.cse.sc.edu/lib/vidal:98a.html
http://jmvidal.cse.sc.edu/lib/vidal:98a.html
http://jmvidal.cse.sc.edu/lib/vidalclri.html
http://jmvidal.cse.sc.edu/lib/vidalclri.html
doi:10.1023/A:1021765422660
http://jmvidal.cse.sc.edu/lib/waltz75.html
http://jmvidal.cse.sc.edu/lib/watkins92a.html
doi:10.1023/A:1022676722315
http://jmvidal.cse.sc.edu/lib/weibull97a.html
http://jmvidal.cse.sc.edu/lib/wellman96a.html
http://jmvidal.cse.sc.edu/lib/netlogo.html
http://jmvidal.cse.sc.edu/lib/netlogo.html
http://ccl.northwestern.edu/netlogo/
http://ccl.northwestern.edu/netlogo/
http://jmvidal.cse.sc.edu/lib/willer99b.html

152 Bibliography

Wolpert, D. and Tumer, K. (2001). Optimal payoff functions for members of col-
lectives. Advances in Complex Systems, 4(2–3):265–279.

Wolpert, D., Wheeler, K., and Tumer, K. (1999). General principles of learning-
based multi-agent systems. In Proceedings of the Third International Confer-
ence on Automomous Agents, pages 77–83, Seattle, WA.

Wolpert, D. H. and Macready, W. G. (1995). No free lunch theorems for search.
Technical report, Santa Fe Institute.

Wolpert, D. H. and Tumer, K. (1999). An introduction to collective intelligence.
Technical report, NASA. NASA-ARC-IC-99-63.

Wurman, P. R., Wellman, M. P., and Walsh, W. E. (2002). Specifying rules for
electronic auctions. AI Magazine, 23(3):15–23.

Yokoo, M., Conitzer, V., Sandholm, T., Ohta, N., and Iwasaki, A. (2005). Coali-
tion games in open anonymous environments. In Proceedings of the Twentieth
National Conference on Artificial Intelligence, pages 509–514, Menlog Park,
California. AAAI Press.

Yokoo, M., Durfee, E. H., Ishida, T., and Kuwabara, K. (1998). The distributed con-
straint satisfaction problem: Formalization and algorithms. IEEE Transactions
on Knowledge and Data Engineering, 10(5):673–685.

Yokoo, M. and Hirayama, K. (1996). Distributed breakout algorithm for solving
distributed constraint satisfaction problems. In Proceedings of the Second In-
ternational Conference on Multiagent Systems, pages 401–408.

Yokoo, M. and Hirayama, K. (2000). Algorithms for distributed constraint satisfac-
tion: A review. Autonomous Agents and Multi-Agent Systems, 3(2):185–207.
doi:10.1023/A:1010078712316.

Zhang, X., Lesser, V., and Abdallah, S. (2005a). Efficient management of multi-
linked negotiation based on a formalized model. Autonomous Agents and Multi-
Agent Systems, 10(2). doi:10.1007/s10458-004-6978-6.

Zhang, X., Lesser, V., and Podorozhny, R. (2005b). Multi-dimensional, multistep
negotiation for task allocation in a cooperative system. Autonomous Agents
and Multi-Agent Systems, 10(1):5–40.

http://jmvidal.cse.sc.edu/lib/wolpert01a.html
http://jmvidal.cse.sc.edu/lib/wolpert01a.html
http://jmvidal.cse.sc.edu/lib/wolpert99b.html
http://jmvidal.cse.sc.edu/lib/wolpert99b.html
http://jmvidal.cse.sc.edu/lib/wolpert95a.html
http://jmvidal.cse.sc.edu/lib/wolpert99a.html
http://jmvidal.cse.sc.edu/lib/wurman02a.html
http://jmvidal.cse.sc.edu/lib/wurman02a.html
http://jmvidal.cse.sc.edu/lib/yokoo05a.html
http://jmvidal.cse.sc.edu/lib/yokoo05a.html
http://jmvidal.cse.sc.edu/lib/yokoo98a.html
http://jmvidal.cse.sc.edu/lib/yokoo98a.html
http://jmvidal.cse.sc.edu/lib/yokoo96a.html
http://jmvidal.cse.sc.edu/lib/yokoo96a.html
http://jmvidal.cse.sc.edu/lib/yokoo00a.html
http://jmvidal.cse.sc.edu/lib/yokoo00a.html
doi:10.1023/A:1010078712316
http://jmvidal.cse.sc.edu/lib/zhang05a.html
http://jmvidal.cse.sc.edu/lib/zhang05a.html
doi:10.1007/s10458-004-6978-6
http://jmvidal.cse.sc.edu/lib/zhang05b.html
http://jmvidal.cse.sc.edu/lib/zhang05b.html

Index

NashQ-learning, 69
friend-or-foe, 70
tæms, 137
0-level, 73
1-level, 73
1-sided proposal, 97
2-level, 73

abt, 25
additive cost function, 90
additive valuation, 116
ADEPT, 87
Adopt, 32
agenda, 95
algorithmic mechanism design, 131
annealing, 95
apo, 37
appeals, 97
argument-based protocols, 97
aristocrat utility, 75
artificial intelligence planning, 15
asynchronous backtracking, 25
Asynchronous Weak-Commitment, 27
atomic bids, 115
auctions, 103
AWESOME, 66
axiomatic, 78

backtracking, 24
bargaining problem, 77
battle of the sexes, 43
belief state, 15
Bellman equation, 13
Bellman update, 13
bi-connected, 133
bidder collusion, 106
Bidtree, 111
Borda count, 122
Border Gateway Protocol, 132
branch and bound, 32
branch on bids, 110
branch on items, 109
Byzantine generals problem, 40

CABOB, 111
CASS, 112
CATS, 113
characteristic form, 49
characteristic function, 49

CLRI model, 71
coalition, 49
coalition formation, 57
coalition structure, 50
COIN, 74
combinatorial auction, 107
common knowledge, 39
common value, 103
concurrent negotiations, 98
constraint satisfaction problem, 19
contract net protocol, 89
cooperative games, 49
coordination problem, 43
coordination relationships, 140
core, 51
correlated value, 103
counter-proposal, 97
critique, 97
csp, 19

dcsp, 20
de-commit, 92
deal, 77
decision version, 108
deductive, 9
depth first search, 20
descriptive approach, 99
desirable voting protocol, 123
deterministic, 12
direct revelation mechanism, 127
discount factor, 13
discounted rewards, 13
distributed algorithmic mechanism design,

131
distributed breakout, 29
distributed constraint optimization, 31
distributed constraint satisfaction, 20
divide and conquer, 16
dominant, 41
dominant strategy equilibrium, 126
double auction, 105
Dutch, 104
dynamic programming, 13

efficient, 41
efficient best first, 118
egalitarian social welfare, 79
egalitarian solution, 79
English auction, 104

153

154 Index

envy-free, 114
equal excess, 54
equi-resistance point, 100
evolutionary game theory, 63
evolutionary stable strategy, 65
excess, 53
expected utility, 11
exploration rate, 68
extended form, 45

factored, 75
feasible, 50
fictitious play, 61
filtering algorithm, 21
first-price open-cry ascending, 104
First-price sealed-bid, 104
folk theorem, 45
free disposal, 116

Gambit, 47
game of chicken, 43
game theory, 39
Groves-Clarke mechanism, 129

hierarchical learning, 16
hill climbing, 90
hyper-resolution rule, 23

implements, 126
implements social choice function f(·) in

dominant strategies, 127
individual hill-climbing, 115
induction, 60
induction bias, 60
inductive, 9
inefficient allocation, 106
iterated dominance, 41
iterated equi-resistance algorithm, 100
iterated prisoner’s dilemma, 44

justify, 97

k-consistency, 22
Kalai-Smorodinsky solution, 81
kernel abt, 27

learning rate, 68
leveled commitment contracts, 93
linear programming, 109
lying auctioneer, 106

machine learning, 59
marginal utility, 10
Markov decision process, 12
maximum expected utility, 12
maxmin strategy, 40
mechanism, 125
mechanism design, 125
mediator, 95

minimax theorem, 41
mixed strategy, 40
monetary payments, 89
monotonic concession protocol, 83
moving target function, 60
Multi-DB++, 31
multi-dimensional deal, 94

n-level, 73
n-queens problem, 20
Nash bargaining solution, 80
Nash equilibrium, 41
Nash equilibrium point, 69
negotiation network, 98
network exchange theory, 99
no free lunch theorem, 60
nogood, 23
non local effects, 137
non-cooperative games, 39
non-deterministic, 12
normal form, 39
nucleolus, 53, 54

observation model, 15
OCSM contracts, 91
one-step negotiation, 86
opacity, 75
open-cry descending price, 104
optapo, 37
optimal policy, 12
or bids, 115
or∗ bids, 116
outcome, 49, 125

pairwise, 122
PAR algorithm, 117
paretian, 125
Pareto frontier, 118
pareto frontier, 78
Pareto optimal, 41
partially observable Markov decision pro-

cess, 15
PAUSE, 113
pausebid, 114
payoff matrix, 39
persuade, 97
plurality vote, 121
policy, 12
postman problem, 88
preference elicitation, 116
preference ordering, 10
Prisoner’s Dilemma, 42
private value, 103
pure strategy, 40

Q-learning, 68
quality accumulation functions, 138
quasi-local minimum, 29

Index 155

rational, 40
reciprocity, 48
Reflectional symmetry, 122
reinforcement learning, 68
repeated games, 61
replicator dynamics, 63
reservation price, 104
resistance, 99
revelation principle, 127
revenue equivalence, 130
rewards, 97
Rotational symmetry, 122
Rubinstein’s alternating offers, 81
runoff, 122

second-price sealed-bid, 104
self-enforce collusion, 106
selfish, 10
Shapley value, 52
simplex plot, 66
social choice function, 125
social law, 47
social welfare, 41
Stirling, 56
Stirling number of the second kind, 108
stochastically, 62
strategic form, 39
strategy, 40
strategy-proof, 127
subgame perfect equilibrium, 46
super-additive, 50
symmetry, 122

tactics, 87
task allocation problem, 88
testing set, 59
threats, 97
tit-for-tat, 45
training set, 59
transferable utility, 49
transition function, 11
type, 125

utilitarian, 55
utilitarian solution, 79
utility function, 9

valuation, 103
value function, 49
value iteration, 13
value of information, 11
Vickrey, 104
Vickrey-Clarke-Groves, 130
VSA, 114

winner determination, 108
winner’s curse, 104
wonderful life, 75

Xor bids, 116

zero-sum, 40
Zeuthen strategy, 84

	Preface
	0.1 Usage
	0.2 Acknowledgments

	1 Multiagent Problem Formulation
	1.1 Utility
	1.1.1 Utility is Not Money
	1.1.2 Expected Utility

	1.2 Markov Decision Processes
	1.2.1 Multiagent Markov Decision Processes
	1.2.2 Partially Observable MDPs

	1.3 Planning
	1.3.1 Hierarchical Planning

	1.4 Summary
	Exercises

	2 Distributed Constraints
	2.1 Distributed Constraint Satisfaction
	2.1.1 Filtering Algorithm
	2.1.2 Hyper-Resolution Based Consistency Algorithm
	2.1.3 Asynchronous Backtracking
	2.1.4 Asynchronous Weak-Commitment Search
	2.1.5 Distributed Breakout

	2.2 Distributed Constraint Optimization
	2.2.1 Adopt
	2.2.2 OptAPO

	Exercises

	3 Standard and Extended Form Games
	3.1 Games in Normal Form
	3.1.1 Solution Concepts
	3.1.2 Famous Games
	3.1.3 Repeated Games

	3.2 Games in Extended Form
	3.2.1 Solution Concepts

	3.3 Finding a Solution
	Exercises

	4 Characteristic Form Games and Coalition Formation
	4.1 Characteristic Form Games
	4.1.1 Solution Concepts
	4.1.2 Finding the Optimal Coalition Structure

	4.2 Coalition Formation
	Exercises

	5 Learning in Multiagent Systems
	5.1 The Machine Learning Problem
	5.2 Cooperative Learning
	5.3 Repeated Games
	5.3.1 Fictitious Play
	5.3.2 Replicator Dynamics
	5.3.3 The AWESOME Algorithm

	5.4 Stochastic Games
	5.4.1 Reinforcement Learning

	5.5 General Theories for Learning Agents
	5.5.1 CLRI Model
	5.5.2 N-Level Agents

	5.6 Collective Intelligence
	5.7 Summary
	5.8 Recent Advances
	Exercises

	6 Negotiation
	6.1 The Bargaining Problem
	6.1.1 Axiomatic Solution Concepts
	6.1.2 Strategic Solution Concepts

	6.2 Monotonic Concession Protocol
	6.2.1 The Zeuthen Strategy
	6.2.2 One-Step Protocol

	6.3 Negotiation as Distributed Search
	6.4 Ad-hoc Negotiation Strategies
	6.5 The Task Allocation Problem
	6.5.1 Payments
	6.5.2 Lying About Tasks
	6.5.3 Contracts

	6.6 Complex Deals
	6.6.1 Annealing Over Complex Deals

	6.7 Argumentation-Based Negotiation
	6.8 Negotiation Networks
	6.8.1 Network Exchange Theory

	Exercises

	7 Auctions
	7.1 Valuations
	7.2 Simple Auctions
	7.2.1 Analysis
	7.2.2 Auction Design

	7.3 Combinatorial Auctions
	7.3.1 Centralized Winner Determination
	7.3.2 Distributed Winner Determination
	7.3.3 Bidding Languages
	7.3.4 Preference Elicitation
	7.3.5 VCG Payments

	Exercises

	8 Voting and Mechanism Design
	8.1 The Voting Problem
	8.1.1 Possible Solutions
	8.1.2 Voting Summary

	8.2 Mechanism Design
	8.2.1 Problem Description
	8.2.2 Distributed Mechanism Design
	8.2.3 Mechanism Design Summary

	9 Coordination Using Goal and Plan Hierarchies
	9.1 tæms
	9.2 GPGP
	9.2.1 Agent Architecture
	9.2.2 Coordination
	9.2.3 Design-to-Criteria Scheduler
	9.2.4 GPGP/tæms Summary

	10 Nature-Inspired Approaches
	10.1 Ants and Termites
	10.2 Immune System
	10.3 Physics

	Bibliography
	Index

